Skip to main content
Log in

Interferometry of multi-level systems: rate-equation approach for a charge qu\({ d }\)it

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We theoretically describe a driven two-electron four-level double-quantum dot (DQD) tunnel coupled to a fermionic sea using the rate-equation formalism. This approach allows to find occupation probabilities of each DQD energy level in a relatively simple way, compared to other methods. Calculated dependencies are compared with the experimental results. The system under study is irradiated by a strong driving signal, and as a result, one can observe Landau–Zener–Stückelberg–Majorana (LZSM) interferometry patterns which are successfully described by the considered formalism. The system operation regime depends on the amplitude of the excitation signal and the energy detuning, so one can transfer the system to the necessary quantum state in the most efficient way by setting these parameters. Obtained results give insights about initializing, characterizing, and controlling the quantum system states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. M. Veldhorst, J.C.C. Hwang, C.H. Yang, A.W. Leenstra, B. de Ronde, J.P. Dehollain, J.T. Muhonen, F.E. Hudson, K.M. Itoh, A. Morello, A.S. Dzurak, An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 9, 981–985 (2014). https://doi.org/10.1038/nnano.2014.216

    Article  ADS  CAS  PubMed  Google Scholar 

  2. M.D. Shulman, O.E. Dial, S.P. Harvey, H. Bluhm, V. Umansky, A. Yacoby, Demonstration of entanglement of electrostatically coupled singlet-triplet qubits. Science 336, 202–205 (2012). https://doi.org/10.1126/science.1217692

    Article  ADS  CAS  PubMed  Google Scholar 

  3. J.R. Petta, A.C. Johnson, J.M. Taylor, E.A. Laird, A. Yacoby, M.D. Lukin, C.M. Marcus, M.P. Hanson, A.C. Gossard, Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005). https://doi.org/10.1126/science.1116955

    Article  ADS  CAS  PubMed  Google Scholar 

  4. R. Hanson, L.H.W. van Beveren, I.T. Vink, J.M. Elzerman, W.J.M. Naber, F.H.L. Koppens, L.P. Kouwenhoven, L.M.K. Vandersypen, Single-shot readout of electron spin states in a quantum dot using spin-dependent tunnel rates. Phys. Rev. Lett. 94, 196802 (2005). https://doi.org/10.1103/PhysRevLett.94.196802

    Article  ADS  CAS  PubMed  Google Scholar 

  5. H. Kiyama, T. Nakajima, S. Teraoka, A. Oiwa, S. Tarucha, Single-shot ternary readout of two-electron spin states in a quantum dot using spin filtering by quantum hall edge states. Phys. Rev. Lett. 117, 236802 (2016). https://doi.org/10.1103/PhysRevLett.117.236802

    Article  ADS  CAS  PubMed  Google Scholar 

  6. M. Friesen, C. Tahan, R. Joynt, M.A. Eriksson, Spin readout and initialization in a semiconductor quantum dot. Phys. Rev. Lett. 92, 037901 (2004). https://doi.org/10.1103/PhysRevLett.92.037901

    Article  ADS  CAS  PubMed  Google Scholar 

  7. V. Cerletti, W.A. Coish, O. Gywat, D. Loss, Recipes for spin-based quantum computing. Nanotechnology 16, R27 (2005). https://doi.org/10.1088/0957-4484/16/4/R01

    Article  CAS  Google Scholar 

  8. D. Loss, D.P. DiVincenzo, Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998). https://doi.org/10.1103/PhysRevA.57.120

    Article  ADS  CAS  Google Scholar 

  9. D.P. DiVincenzo, D. Bacon, J. Kempe, G. Burkard, K.B. Whaley, Universal quantum computation with the exchange interaction. Nature 408, 339–342 (2000). https://doi.org/10.1038/35042541

    Article  ADS  CAS  PubMed  Google Scholar 

  10. M.S. Byrd, D.A. Lidar, Comprehensive encoding and decoupling solution to problems of decoherence and design in solid-state quantum computing. Phys. Rev. Lett. 89, 047901 (2002). https://doi.org/10.1103/PhysRevLett.89.047901

    Article  ADS  CAS  PubMed  Google Scholar 

  11. K. Kim, Visible light emissions and single-electron tunneling from silicon quantum dots embedded in Si-rich \({\rm SiO }_{2}\) deposited in plasma phase. Phys. Rev. B 57, 13072–13076 (1998). https://doi.org/10.1103/PhysRevB.57.13072

    Article  ADS  CAS  Google Scholar 

  12. M.J. Romero, J. van de Lagemaat, Luminescence of quantum dots by coupling with nonradiative surface plasmon modes in a scanning tunneling microscope. Phys. Rev. B 80, 115432 (2009). https://doi.org/10.1103/PhysRevB.80.115432

    Article  ADS  CAS  Google Scholar 

  13. J.C. Estrada-Saldaña, A. Vekris, G. Steffensen, R. Žitko, P. Krogstrup, J. Paaske, K. Grove-Rasmussen, J. Nygård, Supercurrent in a double quantum dot. Phys. Rev. Lett. 121, 257701 (2018). https://doi.org/10.1103/PhysRevLett.121.257701

    Article  ADS  PubMed  Google Scholar 

  14. S. Sasaki, S. Amaha, N. Asakawa, M. Eto, S. Tarucha, Enhanced Kondo effect via tuned orbital degeneracy in a spin \(1/2\) artificial atom. Phys. Rev. Lett. 93, 017205 (2004). https://doi.org/10.1103/PhysRevLett.93.017205

    Article  ADS  CAS  Google Scholar 

  15. C.W.J. Beenakker, A.A.M. Staring, Theory of the thermopower of a quantum dot. Phys. Rev. B 46, 9667–9676 (1992). https://doi.org/10.1103/PhysRevB.46.9667

    Article  ADS  CAS  Google Scholar 

  16. C. Simon, Y.-M. Niquet, X. Caillet, J. Eymery, J.-P. Poizat, J.-M. Gérard, Quantum communication with quantum dot spins. Phys. Rev. B 75, 081302 (2007). https://doi.org/10.1103/PhysRevB.75.081302

    Article  ADS  CAS  Google Scholar 

  17. J. Huwer, R.M. Stevenson, J. Skiba-Szymanska, M.B. Ward, A.J. Shields, M. Felle, I. Farrer, D.A. Ritchie, R.V. Penty, Quantum-dot-based telecommunication-wavelength quantum relay. Phys. Rev. Appl. 8, 024007 (2017). https://doi.org/10.1103/PhysRevApplied.8.024007

    Article  ADS  Google Scholar 

  18. R.M. Abolfath, A.G. Petukhov, I. Žutić, Piezomagnetic quantum dots. Phys. Rev. Lett. 101, 207202 (2008). https://doi.org/10.1103/PhysRevLett.101.207202

    Article  ADS  CAS  PubMed  Google Scholar 

  19. H. Flentje, P.-A. Mortemousque, R. Thalineau, A. Ludwig, A.D. Wieck, C. Bauerle, T. Meunier, Coherent long-distance displacement of individual electron spins. Nat. Commun. (2017). https://doi.org/10.1038/s41467-017-00534-3

    Article  PubMed  PubMed Central  Google Scholar 

  20. T. Brandes, Coherent and collective quantum optical effects in mesoscopic systems. Phys. Rep. 408, 315–474 (2005). https://doi.org/10.1016/j.physrep.2004.12.002

    Article  ADS  CAS  Google Scholar 

  21. W.G. van der Wiel, S. De Franceschi, J.M. Elzerman, T. Fujisawa, S. Tarucha, L.P. Kouwenhoven, Electron transport through double quantum dots. Rev. Mod. Phys. 75, 1–22 (2002). https://doi.org/10.1103/RevModPhys.75.1

    Article  ADS  CAS  Google Scholar 

  22. D. Awschalom, M. Flatte, Challenges for semiconductor spintronics. Nat. Phys. 3, 153 (2007). https://doi.org/10.1038/nphys551

    Article  CAS  Google Scholar 

  23. S. Donsa, S. Andergassen, K. Held, Double quantum dot as a minimal thermoelectric generator. Phys. Rev. B 89, 125103 (2014). https://doi.org/10.1103/PhysRevB.89.125103

    Article  ADS  CAS  Google Scholar 

  24. R. Aguado, L.P. Kouwenhoven, Double quantum dots as detectors of high-frequency quantum noise in mesoscopic conductors. Phys. Rev. Lett. 84, 1986–1989 (2000). https://doi.org/10.1103/PhysRevLett.84.1986

    Article  ADS  CAS  PubMed  Google Scholar 

  25. T. Liu, Q.-P. Su, J.-H. Yang, Y. Zhang, S.-J. Xiong, J.-M. Liu, C.-P. Yang, Transferring arbitrary d-dimensional quantum states of a superconducting transmon qudit in circuit QED. Sci. Rep. (2017). https://doi.org/10.1038/41598-017-07225-5

    Article  PubMed  PubMed Central  Google Scholar 

  26. Y. Wang, Z. Hu, B.C. Sanders, S. Kais, Qudits and high-dimensional quantum computing. Front. Phys. 8, 589504 (2020). https://doi.org/10.3389/fphy.2020.589504

    Article  Google Scholar 

  27. Y. Han, X.-Q. Luo, T.-F. Li, W. Zhang, S.-P. Wang, J. Tsai, F. Nori, J. You, Time-domain grating with a periodically driven qutrit. Phys. Rev. Appl. 11, 014053 (2019). https://doi.org/10.1103/PhysRevApplied.11.014053

    Article  ADS  CAS  Google Scholar 

  28. M. Kononenko, M.A. Yurtalan, S. Ren, J. Shi, S. Ashhab, A. Lupascu, Characterization of control in a superconducting qutrit using randomized benchmarking. Phys. Rev. Res. 3, L042007 (2021). https://doi.org/10.1103/PhysRevResearch.3.L042007

    Article  CAS  Google Scholar 

  29. M.A. Yurtalan, J. Shi, M. Kononenko, A. Lupascu, S. Ashhab, Implementation of a Walsh–Hadamard gate in a superconducting qutrit. Phys. Rev. Lett. 125, 180504 (2020). https://doi.org/10.1103/PhysRevLett.125.180504

    Article  ADS  CAS  PubMed  Google Scholar 

  30. A. Chatterjee, S.N. Shevchenko, S. Barraud, R.M. Otxoa, F. Nori, J.J.L. Morton, M.F. Gonzalez-Zalba, A silicon-based single-electron interferometer coupled to a fermionic sea. Phys. Rev. B 97, 045405 (2018). https://doi.org/10.1103/PhysRevB.97.045405

    Article  ADS  CAS  Google Scholar 

  31. A. Ferrón, D. Domínguez, M.J. Sánchez, Tailoring population inversion in Landau–Zener–Stückelberg interferometry of flux qubits. Phys. Rev. Lett. 109, 237005 (2012). https://doi.org/10.1103/PhysRevLett.109.237005

    Article  ADS  CAS  PubMed  Google Scholar 

  32. A. Ferrón, D. Domínguez, M.J. Sánchez, Dynamic transition in Landau–Zener–Stückelberg interferometry of dissipative systems: the case of the flux qubit. Phys. Rev. B 93, 064521 (2016). https://doi.org/10.1103/PhysRevB.93.064521

    Article  ADS  CAS  Google Scholar 

  33. M.P. Liul, S.N. Shevchenko, Rate-equation approach for multi-level quantum systems. Low Temp. Phys. 49, 102–108 (2023). https://doi.org/10.1063/10.0016482

    Article  ADS  Google Scholar 

  34. D.M. Berns, W.D. Oliver, S.O. Valenzuela, A.V. Shytov, K.K. Berggren, L.S. Levitov, T.P. Orlando, Coherent quasiclassical dynamics of a persistent current qubit. Phys. Rev. Lett. 97, 150502 (2006). https://doi.org/10.1103/PhysRevLett.97.150502

    Article  ADS  CAS  PubMed  Google Scholar 

  35. W.D. Oliver, S.O. Valenzuela, Large-amplitude driving of a superconducting artificial atom. Quantum Inf. Process. 8, 261–281 (2009). https://doi.org/10.1007/s11128-009-0108-y

    Article  CAS  Google Scholar 

  36. X. Wen, Y. Yu, Landau–Zener interference in multilevel superconducting flux qubits driven by large-amplitude fields. Phys. Rev. B (2009). https://doi.org/10.1103/physrevb.79.094529

    Article  Google Scholar 

  37. A. Izmalkov, M. Grajcar, E. Il’ichev, N. Oukhanski, T. Wagner, H.-G. Meyer, W. Krech, M.H.S. Amin, A.M. van den Brink, A.M. Zagoskin, Observation of macroscopic Landau–Zener transitions in a superconducting device. Europhys. Lett. 65, 844–849 (2004). https://doi.org/10.1209/epl/i2003-10200-6

    Article  ADS  CAS  Google Scholar 

  38. S. Ashhab, Landau–Zener transitions in a two-level system coupled to a finite-temperature harmonic oscillator. Phys. Rev. A 90, 062120 (2014). https://doi.org/10.1103/PhysRevA.90.062120

    Article  ADS  CAS  Google Scholar 

  39. M.A. Nakonechnyi, D.S. Karpov, A.N. Omelyanchouk, S.N. Shevchenko, Multi-signal spectroscopy of qubit-resonator systems. Low Temp. Phys. 37, 383 (2021). https://doi.org/10.1063/10.0004230

    Article  ADS  CAS  Google Scholar 

  40. M.P. Liul, C.-H. Chien, C.-Y. Chen, P.Y. Wen, J.C. Chen, Y.-H. Lin, S.N. Shevchenko, F. Nori, I.-C. Hoi, Coherent dynamics of a photon-dressed qubit. Phys. Rev. B 107, 195441 (2023). https://doi.org/10.1103/PhysRevB.107.195441

    Article  ADS  CAS  Google Scholar 

  41. G. Fuchs, G. Burkard, P. Klimov, D. Awschalom, A quantum memory intrinsic to single nitrogen-vacancy centres in diamond. Nat. Phys. 7, 789–793 (2011). https://doi.org/10.1038/nphys2026

    Article  CAS  Google Scholar 

  42. H. Ribeiro, G. Burkard, Nuclear state preparation via Landau–Zener–Stückelberg transitions in double quantum dots. Phys. Rev. Lett. 102, 216802 (2009). https://doi.org/10.1103/PhysRevLett.102.216802

    Article  ADS  CAS  PubMed  Google Scholar 

  43. A. Thiel, The Landau–Zener effect in nuclear molecules. J. Phys. G: Nucl. Part. Phys. 16, 867–910 (1990). https://doi.org/10.1088/0954-3899/16/7/004

    Article  ADS  CAS  Google Scholar 

  44. L. Zhu, A. Widom, P.M. Champion, A multidimensional Landau–Zener description of chemical reaction dynamics and vibrational coherence. J. Chem. Phys. 107, 2859–2871 (1997). https://doi.org/10.1063/1.474645

    Article  ADS  CAS  Google Scholar 

  45. D. Bouwmeester, N.H. Dekker, F.E.V. Dorsselaer, C.A. Schrama, P.M. Visser, J.P. Woerdman, Observation of Landau–Zener dynamics in classical optical systems. Phys. Rev. A 51, 646–654 (1995). https://doi.org/10.1103/PhysRevA.51.646

    Article  ADS  CAS  PubMed  Google Scholar 

  46. J. Stehlik, Y. Dovzhenko, J.R. Petta, J.R. Johansson, F. Nori, H. Lu, A.C. Gossard, Landau–Zener–Stückelberg interferometry of a single electron charge qubit. Phys. Rev. B 86, 121303 (2012). https://doi.org/10.1103/PhysRevB.86.121303

    Article  ADS  CAS  Google Scholar 

  47. W.D. Oliver, Y. Yu, J.C. Lee, K.K. Berggren, L.S. Levitov, T.P. Orlando, Mach–Zehnder interferometry in a strongly driven superconducting qubit. Science 310, 1653–1657 (2005). https://doi.org/10.1126/science.1119678

    Article  ADS  CAS  PubMed  Google Scholar 

  48. M.F. Gonzalez-Zalba, S.N. Shevchenko, S. Barraud, J.R. Johansson, A.J. Ferguson, F. Nori, A.C. Betz, Gate-sensing coherent charge oscillations in a silicon field-effect transistor. Nano Lett. 16, 1614–1619 (2016). https://doi.org/10.1021/acs.nanolett.5b04356

    Article  ADS  CAS  PubMed  Google Scholar 

  49. P.O. Kofman, O.V. Ivakhnenko, S.N. Shevchenko, F. Nori, Majorana’s approach to nonadiabatic transitions validates the adiabatic-impulse approximation. Sci. Rep. 13, 5053 (2023). https://doi.org/10.1038/s41598-023-31084-y

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. K. Ono, S.N. Shevchenko, T. Mori, S. Moriyama, F. Nori, Quantum interferometry with a \(g\)-factor-tunable spin qubit. Phys. Rev. Lett. 122, 207703 (2019). https://doi.org/10.1103/PhysRevLett.122.207703

    Article  ADS  CAS  PubMed  Google Scholar 

  51. T. Wu, Y. Zhou, Y. Xu, S. Liu, J. Li, Landau–Zener–Stückelberg interference in nonlinear regime. Chin. Phys. Lett. 36, 124204 (2019). https://doi.org/10.1088/0256-307X/36/12/124204

    Article  ADS  CAS  Google Scholar 

  52. O.V. Ivakhnenko, S.N. Shevchenko, F. Nori, Nonadiabatic Landau–Zener–Stückelberg–Majorana transitions, dynamics and interference. Phys. Rep. 995, 1–89 (2023). https://doi.org/10.1016/j.physrep.2022.10.002

    Article  ADS  MathSciNet  Google Scholar 

  53. Y. Nakamura, J.S. Tsai, A coherent two-level system in a superconducting single-electron transistor observed through photon-assisted Cooper-pair tunneling. J. Supercond. 12, 799–806 (1999). https://doi.org/10.1023/A:1007793228293

    Article  ADS  CAS  Google Scholar 

  54. M.S. Rudner, A.V. Shytov, L.S. Levitov, D.M. Berns, W.D. Oliver, S.O. Valenzuela, T.P. Orlando, Quantum phase tomography of a strongly driven qubit. Phys. Rev. Lett. 101, 190502 (2008). https://doi.org/10.1103/PhysRevLett.101.190502

    Article  ADS  CAS  PubMed  Google Scholar 

  55. R.K. Malla, M. Raikh, Landau–Zener transition between two levels coupled to continuum. Phys. Lett. A 445, 128249 (2022). https://doi.org/10.1016/j.physleta.2022.128249

    Article  MathSciNet  CAS  Google Scholar 

  56. J.-D. Chen, X.-D. Wen, G.-Z. Sun, Y. Yu, Landau–Zener–Stückelberg interference in a multi-anticrossing system. Chin. Phys. B 20, 088501 (2011). https://doi.org/10.1088/1674-1056/20/8/088501

    Article  ADS  Google Scholar 

  57. Y. Wang, S. Cong, X. Wen, C. Pan, G. Sun, J. Chen, L. Kang, W. Xu, Y. Yu, P. Wu, Quantum interference induced by multiple Landau–Zener transitions in a strongly driven rf-SQUID qubit. Phys. Rev. B 81, 144505 (2010). https://doi.org/10.1103/PhysRevB.81.144505

    Article  ADS  CAS  Google Scholar 

  58. X. Wen, Y. Wang, S. Cong, G. Sun, J. Chen, L. Kang, W. Xu, Y. Yu, P. Wu, S. Han, Landau–Zener–Stuckelberg interferometry in multilevel superconducting flux qubit, arXiv (2010) arXiv:1003.2025

  59. R.M. Otxoa, A. Chatterjee, S.N. Shevchenko, S. Barraud, F. Nori, M.F. Gonzalez-Zalba, Quantum interference capacitor based on double-passage Landau–Zener–Stückelberg–Majorana interferometry. Phys. Rev. B 100, 205425 (2019). https://doi.org/10.1103/PhysRevB.100.205425

    Article  ADS  CAS  Google Scholar 

  60. J. He, D. Pan, M. Liu, Z. Lyu, Z. Jia, G. Yang, S. Zhu, G. Liu, J. Shen, S. N. Shevchenko, F. Nori, J. Zhao, L. Lu, F. Qu, Quantifying quantum coherence of multiple-charge states in tunable Josephson junctions, arXiv (2023) arXiv:2303.02845

Download references

Acknowledgements

S.N.S. acknowledges fruitful discussions with M.F. Gonzalez-Zalba and Franco Nori. M. P. L. was partially supported by the grant from the National Academy of Sciences of Ukraine for research works of young scientists. A. I. R. was supported by the RIKEN International Program Associates (IPA). This work was supported by Army Research Office (ARO) (Grant No. W911NF2010261).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Liul.

Appendix A: Energy levels of a parallel double-quantum dot

Appendix A: Energy levels of a parallel double-quantum dot

In the current research, we study the DQD proposed in Ref. [30]; see Fig. 1a. The first step in the system analysis is finding of the DQD energy levels. In the general form, system electrostatic energy can be written by

$$\begin{aligned} E=\frac{1}{2}\overrightarrow{V}\cdot {\textbf{C}}\overrightarrow{V}=\frac{1}{2} \overrightarrow{V}\cdot \overrightarrow{Q}=\frac{1}{2}\overrightarrow{Q} \cdot {\textbf{C}}^{-1}\overrightarrow{Q}, \end{aligned}$$
(A1)

where \(\overrightarrow{V}\) and \(\overrightarrow{Q}\) are the vectors of voltages and charges, respectively, \({\textbf{C}}\) is the capacitance matrix. In Eq. (A1), we used \(\overrightarrow{Q}=\textbf{C }\overrightarrow{V}\). Thus, to obtain the system energy levels, we need to find the vector of charges and the inverse capacitance matrix of the system.

The charges \(Q_{1,2}\) in the quantum dots can be written as follows:

$$\begin{aligned} Q_{1}= \,& {} C_{\textrm{T1}}(V_{1}-V_{\textrm{TG}})+C_{\textrm{B1}}(V_{1}-V_{\textrm{BG}})+C_{\textrm{S}}(V_{1}-V_{\textrm{S}}) \nonumber \\{} & {} +C_{\textrm{D}}(V_{1}-V_{\textrm{D}})+C_{\textrm{M}}(V_{1}-V_{2}), \end{aligned}$$
(A2)
$$\begin{aligned} Q_{2}= \,& {} C_{\textrm{T2}}(V_{2}-V_{\textrm{TG}})+C_{\textrm{B2}}(V_{2}-V_{\textrm{BG}})+C_{\textrm{S}}(V_{2}-V_{\textrm{S}}) \nonumber \\{} & {} +C_{\textrm{D}}(V_{2}-V_{\textrm{D}})+C_{\textrm{M}}(V_{2}-V_{1}). \end{aligned}$$
(A3)

It is convenient to rewrite expressions (A2, A3) in a matrix form

$$\begin{aligned} \overrightarrow{Q}=\, & {} \begin{pmatrix} Q_{1}+C_{\textrm{T1}}V_{\textrm{TG}}+C_{\textrm{B1}}V_{\textrm{BG}}+C_{\textrm{S}}V_{\textrm{S}}+C_{\textrm{D}}V_{\textrm{D}} \\ Q_{2}+C_{\textrm{T2}}V_{\textrm{TG}}+C_{\textrm{B2}}V_{\textrm{BG}}+C_{\textrm{S}}V_{\textrm{S}}+C_{\textrm{D}}V_{\textrm{D}} \end{pmatrix} \nonumber \\=\, & {} \begin{pmatrix} C_{1}V_{1}-C_{\textrm{M}}V_{2} \\ C_{2}V_{2}-C_{\textrm{M}}V_{1} \end{pmatrix}, \end{aligned}$$
(A4)

where \(C_{1}\) and \(C_{2}\) are the capacitances, connected to the first and the second quantum dots, respectively

$$\begin{aligned} C_{1}= \,& {} C_{\textrm{T1}}+C_{\textrm{B1}}+C_{\textrm{D}}+C_{\textrm{S}}+C_{\textrm{M}}, \\ C_{2}= \,& {} C_{\textrm{T2}}+C_{\textrm{B2}}+C_{\textrm{D}}+C_{\textrm{S}}+C_{\textrm{M}}. \nonumber \end{aligned}$$
(A5)

Then, the capacitance matrix has the following form:

$$\begin{aligned} {\textbf{C}}= \begin{pmatrix} C_{1} &{} -C_{\textrm{M}} \\ -C_{\textrm{M}} &{} C_{2} \end{pmatrix}. \end{aligned}$$
(A6)

Let us assume for simplicity that \(V_{\textrm{S}}=V_{\textrm{D}}=0\). Then, putting expressions for the vector of charges Eq. (A4) and for the inverse capacitance matrix Eq. (A6), for the DQD electrostatic energy, we obtain

$$\begin{aligned} E= \,& {} \frac{1}{C_{1}C_{2}-C_{\textrm{M}}^{2}}\left[ \frac{1}{2}C_{1}Q_{2}^{2}+\frac{1}{ 2}C_{2}Q_{1}^{2}+C_{\textrm{M}}Q_{1}Q_{2}\right] \nonumber \\{} & {} + \frac{V_{\textrm{TG}}}{C_{1}C_{2}-C_{\textrm{M}}^{2}}\left[ C_{\textrm{T1}}\left( C_{\textrm{M}}Q_{2}+C_{2}Q_{1}\right) +C_{\textrm{T2}}\left( C_{1}Q_{2}+C_{\textrm{M}}Q_{1}\right) \right] \nonumber \\{} & {} +\frac{V_{\textrm{BG}}}{C_{1}C_{2}-C_{\textrm{M}}^{2}}\left[ C_{\textrm{B1}}\left( C_{\textrm{M}}Q_{2}+C_{2}Q_{1}\right) +C_{\textrm{B2}}\left( C_{1}Q_{2}+C_{\textrm{M}}Q_{1}\right) \right] \nonumber \\{} & {} + \frac{V_{\textrm{TG}}^{2}}{C_{1}C_{2}-C_{\textrm{M}}^{2}}\left[ \frac{1}{2}C_{1}C_{\textrm{T2}}^{2}+ \frac{1}{2}C_{2}C_{\textrm{T1}}^{2}+ C_{\textrm{T1}}C_{\textrm{T2}}C_{\textrm{M}}\right] \nonumber \\{} & {} +\frac{V_{\textrm{BG}}^{2}}{C_{1}C_{2}-C_{\textrm{M}}^{2}}\left[ \frac{1}{2}C_{1}C_{\textrm{T2}}^{2}+ \frac{1}{2}C_{2}C_{\textrm{T1}}^{2}+C_{\textrm{T1}}C_{\textrm{T2}}C_{\textrm{M}}\right] . \end{aligned}$$
(A7)

To simplify Eq. (A7), let us introduce new values, \(N_{i}=-\frac{Q_{i}}{\left| e\right| }\), for the number of electrons in the ith quantum dot, and reduced top-gate \(n_{t}\) and back-gate \(n_{b}\) voltages

$$\begin{aligned} n_{t}=\, & {} \frac{C_{\textrm{T1}}V_{\textrm{TG}}}{\left| e\right| }=\frac{1}{1+a}\frac{ C_{\textrm{T2}}V_{\textrm{TG}}}{\left| e\right| }, \end{aligned}$$
(A8)
$$\begin{aligned} n_{b}= \,& {} \frac{C_{\textrm{B1}}V_{\textrm{BG}}}{\left| e\right| }=\frac{1}{1-a}\frac{ C_{\textrm{B2}}V_{\textrm{BG}}}{\left| e\right| }, \end{aligned}$$
(A9)

where a is an asymmetry factor in the gate couplings. Assuming \(C_{1}=C_{2}=mC_{\textrm{M}}\) and rewriting the quantum dot charges as \(Q_{1(2)}=-\left| e\right| N_{1(2)}\), then for the energy of the quantum dot, we have

$$\begin{aligned} \frac{E_{N_1,N_2}}{E_{\textrm{C}}}=\, & {} \frac{1}{2}N_{1}^{2}+\frac{1}{2}N_{2}^{2}+\frac{N_{1}N_{2} }{m}\nonumber \\{} & {} -n_{t}\left[ N_{1}+\frac{N_{2}}{m}+(1+a)\left( N_{2}+\frac{N_{1}}{m} \right) \right] \nonumber \\{} & {} -n_{b}\left[ N_{1}+\frac{N_{2}}{m}+(1-a)\left( N_{2}+\frac{N_{1}}{m} \right) \right] \nonumber \\{} & {} + n_{t}^{2}\left[ \frac{1}{2}+\frac{1}{2}(1+a)^{2}+\frac{1+a}{m}\right] \nonumber \\{} & {} +n_{b}^{2}\left[ \frac{1}{2}+\frac{1}{2}(1-a)^{2}+\frac{1-a}{m}\right] \nonumber \\{} & {} +n_{t}n_{b}\left[ 2(1+\frac{1}{m})-a^{2}\right] , \end{aligned}$$
(A10)

where we defined \(E_{\textrm{C}}=E_{\mathrm{C_1}}=E_{\mathrm{C_2}}=mE_{\mathrm{C_M}}=e^{2}\frac{C_{1}}{{C_{1}^{2}-C_{\textrm{M}}^{2}}}\). We plot the energy-level diagram in Fig. 1b for the following parameters: \(a=0.1\), \(n_{b}=0.25\), \(m=10\), and \(N_{1},~N_{2}\) are equal to 0 or 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liul, M.P., Ryzhov, A.I. & Shevchenko, S.N. Interferometry of multi-level systems: rate-equation approach for a charge qu\({ d }\)it. Eur. Phys. J. Spec. Top. 232, 3227–3235 (2023). https://doi.org/10.1140/epjs/s11734-023-00977-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00977-4

Navigation