Skip to main content

Advertisement

Log in

Nesprin-1/2 facilitates breast cancer cell pore migration via nucleus deformation

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The dissemination of cancer cells is one of the main reasons for treatment failure. During the process of establishing distant metastases, cancer cells must migrate through narrow environments, such as intercellular junctions, extracellular matrix, and basement membranes. The deformability of the cell nucleus is a limiting factor for migration through narrow environments; therefore, as the largest and hardest organelle, the nucleus is a key factor in crossing restrictive spaces. Nesprin-1/2 provides mechanical linkage between the nucleus and the cytoskeleton, but the specific mechanism by Nesprin-1/2 regulating tumor cell nuclear deformation is unclear. Our study found that knocking down Nesprin-1/2 significantly weakens cell migration ability, and knocking down Nesprin-1/2 makes the nucleus becoming more easily deformed. Meanwhile, the knockdown of Nesprin-1/2 leads to a decrease in Lamin A/C levels. To explore whether Lamin A/C protein undergoes degradation, we treated cells with caspase-6 inhibitor Z-VEID-FMK, autophagy inhibitor 3-methyladenine (3-MA), or broad-spectrum proteasome inhibitor MG132, and found that knockdown of Nesprin-1/2 led to the degradation of Lamin A/C via the proteasome pathway. Through immunofluorescence experiments, we observed F-actin distribution in the process of pore migration, and found that knockdown of Nesprin-1/2 weakened the pushing force of the nuclear tail, making it unable to propel the nucleus forward. In conclusion, this study demonstrates that Nesprin-1/2 regulates nuclear deformation and reorganizes the cytoskeleton, which together affects cell pore migration and provides a theoretical reference for the study of nuclear deformation mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. A.J. Ridley, M.A. Schwartz, K. Burridge, R.A. Firtel, M.H. Ginsberg, G. Borisy, J.T. Parsons, A.R. Horwitz, Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003)

    Article  ADS  Google Scholar 

  2. J.P. Campanale, D.J. Montell, Who’s really in charge: diverse follower cell behaviors in collective cell migration. Curr. Opin. Cell Biol. 81, 102160 (2023)

    Article  Google Scholar 

  3. J. Chen, D. Yan, Y. Chen, Understanding the driving force for cell migration plasticity. Biophys J. 122, 1–7 (2023)

    Article  ADS  Google Scholar 

  4. P. Friedl, Prespecification and plasticity: shifting mechanisms of cell migration. Curr. Opin. Cell Biol. 16, 14–23 (2004)

    Article  Google Scholar 

  5. M. Krause, F.W. Yang, M. Te Lindert, P. Isermann, J. Schepens, R.J.A. Maas, C. Venkataraman, J. Lammerding, A. Madzvamuse, W. Hendriks, J. Te Riet, K. Wolf, Cell migration through three-dimensional confining pores: speed accelerations by deformation and recoil of the nucleus. Philos. Trans. R Soc. Lond. B Biol Sci. 374, 20180225 (2019)

    Article  Google Scholar 

  6. A. Fruleux, R.J. Hawkins, Physical role for the nucleus in cell migration. J. Phys. Condens. Matter 28, 363002 (2016)

    Article  Google Scholar 

  7. D.E. Jaalouk, J. Lammerding, Mechanotransduction gone awry. Nat. Rev. Mol. Cell Biol. 10, 63–73 (2009)

    Article  Google Scholar 

  8. D. Feng, J.A. Nagy, K. Pyne, H.F. Dvorak, A.M. Dvorak, Neutrophils emigrate from venules by a transendothelial cell pathway in response to FMLP. J. Exp. Med. 187, 903–915 (1998)

    Article  Google Scholar 

  9. M.M. Nava, Y.A. Miroshnikova, L.C. Biggs, D.B. Whitefield, F. Metge, J. Boucas, H. Vihinen, E. Jokitalo, X. Li, J.M. Garcia Arcos, B. Hoffmann, R. Merkel, C.M. Niessen, K.N. Dahl, S.A. Wickstrom, Heterochromatin-driven nuclear softening protects the genome against mechanical stress-induced damage. Cell 181, 800-817e822 (2020)

    Article  Google Scholar 

  10. A. Tajik, Y. Zhang, F. Wei, J. Sun, Q. Jia, W. Zhou, R. Singh, N. Khanna, A.S. Belmont, N. Wang, Transcription upregulation via force-induced direct stretching of chromatin. Nat. Mater. 15, 1287–1296 (2016)

    Article  ADS  Google Scholar 

  11. J. Swift, I.L. Ivanovska, A. Buxboim, T. Harada, P.C. Dingal, J. Pinter, J.D. Pajerowski, K.R. Spinler, J.W. Shin, M. Tewari, F. Rehfeldt, D.W. Speicher, D.E. Discher, Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341, 1240104 (2013)

    Article  Google Scholar 

  12. V. Venturini, F. Pezzano, F. Catala Castro, H.M. Hakkinen, S. Jimenez-Delgado, M. Colomer-Rosell, M. Marro, Q. Tolosa-Ramon, S. Paz-Lopez, M.A. Valverde, J. Weghuber, P. Loza-Alvarez, M. Krieg, S. Wieser, V. Ruprecht, The nucleus measures shape changes for cellular proprioception to control dynamic cell behavior. Science 370, eaba2644 (2020)

    Article  Google Scholar 

  13. A.J. Lomakin, C.J. Cattin, D. Cuvelier, Z. Alraies, M. Molina, G.P.F. Nader, N. Srivastava, P.J. Saez, J.M. Garcia-Arcos, I.Y. Zhitnyak, A. Bhargava, M.K. Driscoll, E.S. Welf, R. Fiolka, R.J. Petrie, N.S. De Silva, J.M. Gonzalez-Granado, N. Manel, A.M. Lennon-Dumenil, D.J. Muller, M. Piel, The nucleus acts as a ruler tailoring cell responses to spatial constraints. Science 370, eaba2894 (2020)

    Article  Google Scholar 

  14. B.D. Hoffman, C. Grashoff, M.A. Schwartz, Dynamic molecular processes mediate cellular mechanotransduction. Nature 475, 316–323 (2011)

    Article  Google Scholar 

  15. A. Katiyar, J. Zhang, J.D. Antani, Y. Yu, K.L. Scott, P.P. Lele, C.A. Reinhart-King, N.J. Sniadecki, K.J. Roux, R.B. Dickinson, T.P. Lele, The nucleus bypasses obstacles by deforming like a drop with surface tension mediated by Lamin A/C. Adv. Sci. (Weinh) 9, e2201248 (2022)

    Article  Google Scholar 

  16. N.L. Ovsiannikova, S.V. Lavrushkina, A.V. Ivanova, L.M. Mazina, O.A. Zhironkina, Kireev, II, Lamin A as a determinant of mechanical properties of the cell nucleus in health and disease. Biochemistry (Mosc) 86, 1288–1300 (2021)

    Article  Google Scholar 

  17. G. Lee, S.B. Han, D.H. Kim, Cell-ECM contact-guided intracellular polarization is mediated via lamin A/C dependent nucleus-cytoskeletal connection. Biomaterials 268, 120548 (2021)

    Article  Google Scholar 

  18. J. Lammerding, P.C. Schulze, T. Takahashi, S. Kozlov, T. Sullivan, R.D. Kamm, C.L. Stewart, R.T. Lee, Lamin A/C deficiency causes defective nuclear mechanics and mechanotransduction. J Clin Invest 113, 370–378 (2004)

    Article  Google Scholar 

  19. F. Roncato, O. Regev, S.W. Feigelson, S.K. Yadav, L. Kaczmarczyk, N. Levi, D. Drago-Garcia, S. Ovadia, M. Kizner, Y. Addadi, J.C. Sabino, Y. Ovadya, S.F. de Almeida, E. Feldmesser, G. Gerlitz, R. Alon, Reduced Lamin A/C does not facilitate cancer cell transendothelial migration but compromises lung metastasis. Cancers (Basel) 13, 2383 (2021)

    Article  Google Scholar 

  20. G.E. Morris, K.N. Randles, Nesprin isoforms: are they inside or outside the nucleus? Biochem. Soc. Trans. 38, 278–280 (2010)

    Article  Google Scholar 

  21. D. Rajgor, C.M. Shanahan, Nesprins: from the nuclear envelope and beyond. Expert Rev. Mol. Med. 15, e5 (2013)

    Article  Google Scholar 

  22. E. Antmen, U. Demirci, V. Hasirci, Micropatterned surfaces expose the coupling between actin cytoskeleton-Lamin/Nesprin and nuclear deformability of breast cancer cells with different malignancies. Adv. Biol. (Weinh) 5, e2000048 (2021)

    Article  Google Scholar 

  23. A. Matsumoto, M. Hieda, Y. Yokoyama, Y. Nishioka, K. Yoshidome, M. Tsujimoto, N. Matsuura, Global loss of a nuclear lamina component, lamin A/C, and LINC complex components SUN1, SUN2, and nesprin-2 in breast cancer. Cancer Med. 4, 1547–1557 (2015)

    Article  Google Scholar 

  24. I. Dupin, S. Etienne-Manneville, Nuclear positioning: mechanisms and functions. Int. J. Biochem. Cell Biol. 43, 1698–1707 (2011)

    Article  Google Scholar 

  25. M. Almonacid, M.E. Terret, M.H. Verlhac, Nuclear positioning as an integrator of cell fate. Curr. Opin. Cell Biol. 56, 122–129 (2019)

    Article  Google Scholar 

  26. C. Bruno, Nuclear positioning: a matter of life. Semin. Cell Dev. Biol. 82, 1–2 (2018)

    Article  Google Scholar 

  27. D.G. Thomas, A. Yenepalli, C.M. Denais, A. Rape, J.R. Beach, Y.L. Wang, W.P. Schiemann, H. Baskaran, J. Lammerding, T.T. Egelhoff, Non-muscle myosin IIB is critical for nuclear translocation during 3D invasion. J. Cell Biol. 210, 583–594 (2015)

    Article  Google Scholar 

  28. B. Cadot, V. Gache, E.R. Gomes, Moving and positioning the nucleus in skeletal muscle - one step at a time. Nucleus 6, 373–381 (2015)

    Article  Google Scholar 

  29. B. Burke, Chain reaction: LINC complexes and nuclear positioning. F1000Res 8, 136 (2019)

    Article  ADS  Google Scholar 

  30. A. Jayo, M. Malboubi, S. Antoku, W. Chang, E. Ortiz-Zapater, C. Groen, K. Pfisterer, T. Tootle, G. Charras, G.G. Gundersen, M. Parsons, Fascin regulates nuclear movement and deformation in migrating cells. Dev. Cell 38, 371–383 (2016)

    Article  Google Scholar 

  31. K. Pfisterer, A. Jayo, M. Parsons, Control of nuclear organization by F-actin binding proteins. Nucleus 8, 126–133 (2017)

    Article  Google Scholar 

  32. P.M. Davidson, A. Battistella, T. Dejardin, T. Betz, J. Plastino, N. Borghi, B. Cadot, C. Sykes, Nesprin-2 accumulates at the front of the nucleus during confined cell migration. EMBO Rep. 21, e49910 (2020)

    Article  Google Scholar 

  33. R. Zhu, C. Liu, G.G. Gundersen, Nuclear positioning in migrating fibroblasts. Semin. Cell Dev. Biol. 82, 41–50 (2018)

    Article  Google Scholar 

  34. T.J. Chancellor, J. Lee, C.K. Thodeti, T. Lele, Actomyosin tension exerted on the nucleus through nesprin-1 connections influences endothelial cell adhesion, migration, and cyclic strain-induced reorientation. Biophys. J. 99, 115–123 (2010)

    Article  ADS  Google Scholar 

  35. T. Lammermann, B.L. Bader, S.J. Monkley, T. Worbs, R. Wedlich-Soldner, K. Hirsch, M. Keller, R. Forster, D.R. Critchley, R. Fassler, M. Sixt, Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453, 51–55 (2008)

    Article  ADS  Google Scholar 

  36. J.K. Kim, A. Louhghalam, G. Lee, B.W. Schafer, D. Wirtz, D.H. Kim, Nuclear lamin A/C harnesses the perinuclear apical actin cables to protect nuclear morphology. Nat. Commun. 8, 2123 (2017)

    Article  ADS  Google Scholar 

  37. S.J. Heo, K.H. Song, S. Thakur, L.M. Miller, X. Cao, A.P. Peredo, B.N. Seiber, F. Qu, T.P. Driscoll, V.B. Shenoy, M. Lakadamyali, J.A. Burdick, R.L. Mauck, Nuclear softening expedites interstitial cell migration in fibrous networks and dense connective tissues. Sci. Adv. 6, eaax5083 (2020)

    Article  ADS  Google Scholar 

  38. T. Fischer, A. Hayn, C.T. Mierke, Effect of nuclear stiffness on cell mechanics and migration of human breast cancer cells. Front. Cell Dev. Biol. 8, 393 (2020)

    Article  Google Scholar 

  39. T. Harada, J. Swift, J. Irianto, J.W. Shin, K.R. Spinler, A. Athirasala, R. Diegmiller, P.C. Dingal, I.L. Ivanovska, D.E. Discher, Nuclear lamin stiffness is a barrier to 3D migration, but softness can limit survival. J. Cell Biol. 204, 669–682 (2014)

    Article  Google Scholar 

  40. A. Das, A. Barai, M. Monteiro, S. Kumar, S. Sen, Nuclear softening is essential for protease-independent migration. Matrix Biol. 82, 4–19 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported, in part or in whole, by the National Natural Science Foundation of China (32071304, U19A2006, 12132004, 11972111, 32171309, 12272086), the China Postdoctoral Science Foundation (2019T120821), the Sichuan Science and Technology Program (2023NSFSC1233, 2022NSFSC0048, 2022NSFSC0686, 2023YFSY0038), and the Joint Funds of Center for Engineering Medicine (ZYGX2021YGLH017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang Qin or Yiyao Liu.

Ethics declarations

Conflicts of interest

The authors declare no potential conflicts of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, X., Chen, K., Wang, M. et al. Nesprin-1/2 facilitates breast cancer cell pore migration via nucleus deformation. Eur. Phys. J. Spec. Top. 232, 2739–2749 (2023). https://doi.org/10.1140/epjs/s11734-023-00930-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00930-5

Navigation