Skip to main content
Log in

Evolution of an ensemble of spherical particles in metastable media with allowance for their unsteady-state growth rates

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The process of particle nucleation and growth at the initial and intermediate stages of bulk crystallization in metastable liquids is studied. An integrodifferential model of balance and kinetic equations with corresponding boundary and initial conditions is formulated with allowance for non-stationary temperature/concentration field around each evolving particle. The model is solved using the saddle-point technique in a parametric form. The particle-radius distribution function, supercooling/supersaturation of liquid, total number of particles in liquid and their average size are found analytically. The melt supercolling (solution supersaturation) decreases with time due to the latent heat of phase transformation released by evolving crystals. As this takes place, the particle-radius distribution function is bounded by the maximal size of crystals and shifts to larger crystal radii with time as a result of particle nucleation and growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

No Data associated in the manuscript.

References

  1. D.V. Alexandrov, A.A. Ivanov, I.G. Nizovtseva, S. Lippmann, I.V. Alexandrova, E.V. Makoveeva, Crystals 12, 949 (2022)

    Google Scholar 

  2. S. Martin, P. Kauffman, J. Fluid Mech. 64, 507 (1974)

    ADS  Google Scholar 

  3. W. Kurz, D.J. Fisher, Fundamentals of solidification (Trans Tech Publications, Aedermannsdorf, 1989)

    Google Scholar 

  4. D.V. Alexandrov, A.P. Malygin, Dokl. Earth Sci. 411A, 1407 (2006)

    ADS  Google Scholar 

  5. D. Herlach, P. Galenko, D. Holland-Moritz, Metastable solids from undercooled melts (Elsevier, Amsterdam, 2007)

    Google Scholar 

  6. D.V. Alexandrov, A.P. Malygin, Phys. Earth Planet. Int. 189, 134 (2011)

    ADS  Google Scholar 

  7. D.V. Alexandrov, A.Y. Zubarev, Philos. Trans. R. Soc. A 377, 20180353 (2019)

    ADS  Google Scholar 

  8. U. Volmer, J. Raisch, Control Eng. Practice 9, 837 (2001)

  9. A. Rachah, D. Noll, F. Espitalier, F. Baillon, Math. Methods Appl. Sci. 39, 1101 (2015)

    Google Scholar 

  10. D.V. Alexandrov, Chem. Eng. Sci. 117, 156 (2014)

    Google Scholar 

  11. E.V. Makoveeva, D.V. Alexandrov, A.A. Ivanov, Crystals 12, 1634 (2022)

    Google Scholar 

  12. Y.A. Buyevich, V.V. Mansurov, J. Cryst. Growth 104, 861 (1990)

    ADS  Google Scholar 

  13. D.A. Barlow, J. Cryst. Growth 311, 2480 (2009)

    ADS  Google Scholar 

  14. D.A. Barlow, J. Cryst. Growth 470, 8 (2017)

    ADS  Google Scholar 

  15. D.V. Alexandrov, A.P. Malygin, J. Phys. A Math. Theor. 46, 455101 (2013)

    ADS  Google Scholar 

  16. D.V. Alexandrov, I.V. Alexandrova, A.A. Ivanov, A.P. Malygin, I.O. Starodumov, L.V. Toropova, Russ. Metall. (Metally) 2019, 787 (2019)

    ADS  Google Scholar 

  17. D.V. Alexandrov, J. Phys. A Math. Theor. 51, 075102 (2018)

    ADS  Google Scholar 

  18. D.V. Alexandrov, I.G. Nizovtseva, I.V. Alexandrova, Int. J. Heat Mass Trans. 128, 46 (2019)

    Google Scholar 

  19. D.V. Alexandrov, I.V. Alexandrova, Philos. Trans. R. Soc. A 377, 20180209 (2019)

    ADS  Google Scholar 

  20. I.V. Alexandrova, D.V. Alexandrov, Philos. Trans. R. Soc. A 378, 20190245 (2020)

    ADS  Google Scholar 

  21. I.V. Alexandrova, A.A. Ivanov, A.P. Malygin, D.V. Alexandrov, M.A. Nikishina, Eur. Phys. J. Spec. Top. 231, 1089 (2022)

    Google Scholar 

  22. D.V. Alexandrov, Eur. Phys. J. Special Top. 229, 383 (2020)

    ADS  Google Scholar 

  23. M.V. Fedoruk, Saddle-point method (Nauka, Moscow, 1977)

    Google Scholar 

  24. J. Frenkel, Kinetic theory of liquids (Dover, New York, 1945)

    MATH  Google Scholar 

  25. E.M. Lifshitz, L.P. Pitaevskii, Physical kinetics (Pergamon Press, Oxford, 1981)

    Google Scholar 

  26. L.D. Landau, E.M. Lifshitz, Statistical physics (Pergamon Press, Oxford, 1980)

    MATH  Google Scholar 

  27. J. Garside, C. Gaska, J.W. Mullin, J. Cryst. Growth 13, 510 (1972)

    ADS  Google Scholar 

  28. V.A. Shneidman, Phys. Rev. E 82, 031603 (2010)

    ADS  Google Scholar 

  29. C.V. Thompson, F. Spaepen, Acta Metall. 31, 2021 (1983)

    Google Scholar 

  30. N.A. Avdonin, Mathematical description of crystallization processes (Zinatne, Riga, 1980)

    MATH  Google Scholar 

  31. N. Gherras, G. Fevotte, J. Cryst. Growth 342, 88 (2012)

    ADS  Google Scholar 

  32. B.I. Kidyarov, Kinetics of crystal formation from liquid phase (Nauka, Novosibirsk, 1979)

    Google Scholar 

  33. E.V. Makoveeva, D.V. Alexandrov, Phil. Mag. Lett. 98, 199 (2018)

    ADS  Google Scholar 

  34. E.V. Makoveeva, D.V. Alexandrov, Eur. Phys. J. Special Top. 229, 2923 (2020)

    ADS  Google Scholar 

  35. D.V. Alexandrov, P.K. Galenko, Philos. Trans. R. Soc. A 379, 20200325 (2021)

    ADS  Google Scholar 

  36. D.V. Alexandrov, A.O. Ivanov, J. Cryst. Growth 210, 797 (2000)

    ADS  Google Scholar 

  37. A. Karma, W.-J. Rappel, Phys. Rev. E 57, 43231 (1998)

    Google Scholar 

  38. X. Tong, C. Beckermann, A. Karma, Q. Li, Phys. Rev. E 63, 061601 (2001)

    ADS  Google Scholar 

  39. D.V. Alexandrov, P.K. Galenko, J. Phys. Chem. Solids 108, 98 (2017)

    ADS  Google Scholar 

  40. D.V. Alexandrov, D.L. Aseev, J. Fluid Mech. 527, 57 (2005)

    ADS  MathSciNet  Google Scholar 

  41. P.K. Galenko, V.A. Zhuravlev, Physics of dendrites (World Scientific, Singapore, 1994)

    Google Scholar 

  42. H.E. Huppert, J. Fluid Mech. 212, 209 (1990)

    ADS  MathSciNet  Google Scholar 

  43. R.N. Hills, D.E. Loper, P.H. Roberts, Q., J. Appl. Maths. 36, 505 (1983)

  44. D.V. Alexandrov, Int. J. Heat Mass Trans. 47, 1383 (2004)

    Google Scholar 

  45. D.V. Alexandrov, I.G. Nizovtseva, A.P. Malygin, H.-N. Huang, D. Lee, J. Phys. 20, 114105 (2008)

    Google Scholar 

  46. D.V. Alexandrov, A.P. Malygin, Int. J. Heat Mass Trans. 49, 763 (2006)

    Google Scholar 

  47. D.V. Alexandrov, D.L. Aseev, I.G. Nizovtseva, H.-N. Huang, D. Lee, Int. J. Heat Mass Trans. 50, 3616 (2007)

    Google Scholar 

  48. A.C. Fowler, IMA, J. Appl. Math. 35, 159 (1985)

  49. D.V. Alexandrov, A.P. Malygin, Int. J. Heat Mass Trans. 55, 3196 (2012)

    Google Scholar 

  50. M.G. Worster, J. Fluid Mech. 167, 481 (1986)

    ADS  Google Scholar 

  51. V.T. Borisov, Theory of two-phase zone of a metal ingot (Metallurgiya Publishing House, Moscow, 1987)

    Google Scholar 

  52. E. Makoveeva, D. Alexandrov, A. Ivanov, Math. Meth. Appl. Sci. 44, 12244 (2021)

    Google Scholar 

Download references

Acknowledgements

The research funding from the Ministry of Science and High Education of the Russian Federation (Ural Federal University Program of Development within the Priority-2030 Program) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenya V. Makoveeva.

Additional information

Structural Transformations and Non-Equilibrium Phenomena in Multicomponent Disordered Systems. Guest editors: Liubov Toropova, Irina Nizovtseva.

Appendices

Apendix A

Coefficients and functions entering the analytical solution are given by

$$\begin{aligned} a_0(z)= & {} -\Gamma \left( \frac{1}{4}\right) h(0, t) H(0) , \\ a_1(z)= & {} 4 \Gamma \left( \frac{1}{2}\right) H(0)\left[ H(0)\left( \frac{\partial h}{\partial \nu }\right) _{\nu =0}+h(0, t) H^{\prime }(0)\right] , \\ a_2(z)= & {} -8 \Gamma \left( \frac{3}{4}\right) H^2(0)\left[ 2 H^{\prime }(0)\left( \frac{\partial h}{\partial \nu}\right) _{\nu =0}\right. \\{} & {} \left. +H(0)\left( \frac{\partial ^2 h}{\partial \nu^2}\right) _{\nu =0}+h(0, t) H^{\prime \prime }(0)\right] , \\ a_3(z)= & {} \frac{32}{3} H^3(0)\left[ 3 H^{\prime \prime }(0)\left( \frac{\partial h}{\partial \nu}\right) _{\nu =0}+h(0, t) H^{\prime \prime \prime }(0)\right. \\{} & {} \left. +3H^{\prime }(0)\left( \frac{\partial ^2 h}{\partial \nu^2}\right) _{\nu =0}+H(0)\left( \frac{\partial ^3 h}{\partial \nu^3}\right) _{\nu =0}\right] , \\ h(0, t)= & {} \frac{z}{\gamma _*^2}(1 - z^2)^2 ,\ \ \left( \frac{\partial h}{\partial \nu}\right) _{\nu =0} = -\frac{2z^2}{\gamma _*}(1-z^2)\\ & \quad +\frac{(1-z^2)^2}{2\gamma _*} , \\ \left( \frac{\partial ^2 h}{\partial \nu^2}\right) _{\nu =0}= & {} 5z^3 - 3z ,\ \ \left( \frac{\partial ^3 h}{\partial \nu^3}\right) _{\nu =0} = \frac{15}{2}\gamma _*z^2 - \frac{3}{2}\gamma _* , \\ \psi _0= & {} \Gamma \left( \frac{1}{4}\right) \frac{\varkappa b_1}{4\gamma _*^3 p^{-1/4}} \left( z^2 - z^4 + \frac{z^6-1}{3} \right) , \\ \psi _1= & {} 2\Gamma \left( \frac{1}{2} \right) \frac{b_1 \varkappa ^2}{\gamma _*^2 p^{1/2}} \\{} & {} \times \left( \frac{1}{6} + \frac{2z}{19} - \frac{z^2}{2} -\frac{4z^3}{19} + \frac{2z^5}{19} + \frac{z^4}{2} - \frac{z^6}{6} \right) , \\ \psi _2= & {} \Gamma \left( \frac{3}{4}\right) \frac{b_1 \varkappa ^3}{\gamma _* p^{3/4}} \\{} & {} \times \left( \frac{1}{25} + \frac{z}{15} - \frac{1}{4}z^2 - \frac{2}{15}z^3\right.\\ & \left. + \frac{14}{25}z^4 - \frac{1}{15}z^5 - \frac{17}{100}z^6 \right) , \\ \psi _3= & {} \frac{4}{3p} \left( -\frac{3}{20} - \frac{39}{100}z - \frac{3}{5}z^2 - \frac{13}{20}z^3\right.\\ & \left. + \frac{13}{10}z^4 + \frac{1}{100}z^5 - \frac{2}{5}z^6 \right) , \\ z= & {} z(x_1(t)) = 1 - \frac{\gamma _*}{2}x_1(t), \quad x_1(t) = \int \limits _0^t \varpi (t_1) \textrm{d} t_1 . \end{aligned}$$

Apendix B

The i-th approximations for the particle-radius distribution function, the total number of particles, and their average size are defined by the following expressions

$$\begin{aligned} \Psi _i(x_1(t),s)= & {} \frac{1}{\sqrt{1-\gamma _*s}} E_{1i}^{-1}(t,s) \exp \left[ -\frac{p(1-E_{1i}^2)}{E_{1i}^2}\right] , \\ E_{1i}(x_1(t), s)= & {} 1 - b_1\int \limits _0^{x_1(t)+\frac{2\sqrt{1-\gamma _*s}}{\gamma _*} - \frac{2}{\gamma _*}} \sum \limits _{k=0}^{i} p^{-(k+1)/4}a_k(x_2) \textrm{d}x_2 , \\ N_i(x_1(t))= & {} \frac{1}{l_0^3} \int \limits _0^{s_m(x_1(t))} \Psi _i(x_1(t), s) \textrm{d}s, \\ \bar{L}_i(x_1(t))= & {} l_0 \int \limits _0^{s_m(x_1(t))}s\Psi _i\textrm{d}s \left( \int \limits _0^{s_m(x_1(t))}\Psi _i\textrm{d}s \right) ^{-1} , \end{aligned}$$

where \(i = 0,1,2,....\) and

$$\begin{aligned} n_i(x_1(t)) = \frac{N_i(x_1(t))}{N_3(x_*)}, \quad u_i(x_1(t)) = \frac{\bar{L}_i(x_1(t))}{\bar{L}_3(x_*)} . \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makoveeva, E.V., Koroznikova, I.E., Glebova, A.E. et al. Evolution of an ensemble of spherical particles in metastable media with allowance for their unsteady-state growth rates. Eur. Phys. J. Spec. Top. 232, 1177–1187 (2023). https://doi.org/10.1140/epjs/s11734-023-00854-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00854-0

Navigation