Skip to main content
Log in

Drop train flow in a microtube

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This study investigates the flow of a thin annular film driven by an axial force in a microtube. Partial wetting is taken into account using the diffuse interface theory and the film dynamics is approximated by a long-wave mesoscopic model. Using time integration and path-following method, we study the different traveling waves. A rich behavior is brought to light and notably the existence of drop train with a complex spatial organization. We determine the genesis of the drop train related to the coarsening phenomenon. Increasing the domain size, the complexity of these pattern increases by breaking the translation symmetry. Thus, for low mean water content, flow in a microtube occurs via drop train patterns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

References

  1. P. Beltrame, Partial and complete wetting in micro-tube. Europhys. Lett. 121(64), 002 (2018)

    Google Scholar 

  2. P. Beltrame, U. Thiele, Time integration and steady-state continuation for 2d lubrication equations. SIAM J. Appl. Dyn. Syst. 9, 484–518 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. P. Beltrame, E. Knobloch, P. Hänggi et al., Rayleigh and depinning instabilities of forced liquid ridges on heterogeneous substrates. Phys. Rev. E 83(1), 016–305 (2011)

    Article  MathSciNet  Google Scholar 

  4. R. Camassa, H.R. Ogrosky, J. Olander, Viscous film flow coating the interior of a vertical tube. Part 1. Gravity-driven flow. J. Fluid Mech. 745, 682–715 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. G.F. Dietze, C. Ruyer-Quil, Films in narrow tubes. J. Fluid Mech. 762, 68–109 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. C. Duprat, C. Ruyer-Quil, F. Giorgiutti-Dauphiné, Spatial evolution of a film flowing down a fiber. Phys. Fluids 21(4), 042109 (2009)

    Article  ADS  MATH  Google Scholar 

  7. A. Frenkel, A. Babchin, B. Levich et al., Annular flows can keep unstable films from breakup: nonlinear saturation of capillary instability. J. Colloid Interface Sci. 115(1), 225–233 (1987)

    Article  ADS  Google Scholar 

  8. M. Galvagno, D. Tseluiko, H. Lopez et al., Continuous and discontinuous dynamic unbinding transitions in drawn film flow. Phys. Rev. Lett. 112(137), 803 (2014)

    Google Scholar 

  9. J.B. Grotberg, Respiratory fluid mechanics. Phys. Fluids 23(021), 301 (2011)

    Google Scholar 

  10. O.E. Jensen, Draining collars and lenses in liquid-lined vertical tubes. J. Colloid Interface Sci. 221(1), 38–49 (2000)

    Article  ADS  Google Scholar 

  11. S. Kalliadasis, H.C. Chang, Drop formation during coating of vertical fibres. J. Fluid Mech. 261, 135–168 (1994)

    Article  ADS  MATH  Google Scholar 

  12. S. Kalliadasis, U. Thiele eds., Thin Films of Soft Matter (Springer, Wien, 2007), pp. 25–94. Chap Structure formation in thin liquid films

  13. V. Kerchman, Strongly nonlinear interfacial dynamics in core annular flows. J. Fluid Mech. 290, 131–166 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. W.L. Olbricht, Pore-scale prototypes of multiphase flow in porous media. Annu. Rev. Fluid Mech. 28(1), 187–213 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  15. L.M. Pismen, Y. Pomeau, Disjoining potential and spreading of thin liquid layers in the diffuse-interface model coupled to hydrodynamics. Phys. Rev. E 62, 2480–2492 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  16. T. Podgorski, J.M. Flesselles, L. Limat, Corners, cusps, and pearls in running drops. Phys. Rev. Lett. 86(3), 036–102 (2001)

    Google Scholar 

  17. C. Ruyer-Quil, P. Treveleyan, F. Giogiutti-Dauphiné et al., Modelling film flows down a fibre. J. Fluid Mech. 603, 431–462 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. S. S, A. L, C. B, et al., Identifying the functional macropore network related to preferential flow in structured soils. Vadose Zone J. 14(10), 1–16 (2015)

  19. U. Thiele, M.G. Velarde, K. Neuffer et al., Film rupture in the diffuse interface model coupled to hydrodynamics. Phys. Rev. E 64(3), 031–602 (2001)

    Article  Google Scholar 

  20. U. Thiele, K. Neuffer, M. Bestehorn et al., Sliding drops on an inclined plane. Colloids Surf. A 206, 87–104 (2002)

    Article  Google Scholar 

  21. U. Thiele, K. Neuffer, Y. Pomeau, M.G. Velarde, On the importance of nucleation solutions for the rupture of thin liquid films. Colloids Surf. A 206, 135–155 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Beltrame.

Additional information

S.I. : IMA10 - Interfacial Fluid Dynamics and Processes. Guest editors: Rodica Borcia, Sebastian Popescu, Ion Dan Borcia.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beltrame, P. Drop train flow in a microtube. Eur. Phys. J. Spec. Top. 232, 435–442 (2023). https://doi.org/10.1140/epjs/s11734-023-00786-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-023-00786-9

Navigation