Skip to main content
Log in

Intracortical synchronization pattern on the preclinical and clinical stages of absence epilepsy (analysis of wavelet bicoherence in WAG/Rij rats)

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Here we examine the intracortical synchronization pattern in freely moving WAG/Rij rats (valid animal model of absence epilepsy). In all rats, electrocorticograms were recorded at the age 5 and 9 months (i.e., preclinical and clinical stages of absence epilepsy in epileptic subjects). To assess intracortical synchronization pattern, we measured wavelet bicoherence in unilateral (fronto-frontal) and bilateral (fronto-occipital) electrode pairs in five non-overlapping frequency bands (“1–4 Hz”; “5–9 Hz”; “9–12 Hz”; “12–14 Hz”; “14–20 Hz”) and two additional bands “0.5–1.5 Hz”; “10–14 Hz” bands. Bilateral fronto-frontal synchronization in epileptic subjects was lower than in non-epileptic ones only on the clinical stage of absence epilepsy. Unilateral fronto-occipital synchronization in epileptic rats was lower (“5–9 Hz” and “10–14 Hz”) than in non-epileptic ones only on preclinical stage. This finding may be interpreted as a marker of thalamo-cortical impairment associated with epileptogenic processes underlying long-term progression of absence epilepsy. We construct plots of synchronization patterns or diagnostic maps, which can be used for early diagnosis of absence epilepsy in predisposed subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

The datasets generated during and analysed during the current study are available from the corresponding author on reasonable request.

References

  1. I.E. Scheffer, S. Berkovic, G. Capovilla, M.B. Connolly, J. French, L. Guilhoto, E. Hirsch, S. Jain, G.W. Mathern, S.L. Moshé et al., ILAE classification of the epilepsies: position paper of the ILAE commission for classification and terminology. Epilepsia 58(4), 512–521 (2017)

    Google Scholar 

  2. R.S. Fisher, J.H. Cross, J.A. French, N. Higurashi, E. Hirsch, F.E. Jansen, L. Lagae, S.L. Moshé, J. Peltola, E. Roulet Perez et al., Operational classification of seizure types by the international league against epilepsy: Position paper of the ILAE commission for classification and terminology. Epilepsia 58(4), 522–530 (2017)

    Google Scholar 

  3. S. Matricardi, A. Verrotti, F. Chiarelli, C. Cerminara, P. Curatolo, Current advances in childhood absence epilepsy. Pediatr. Neurol. 50(3), 205–212 (2014)

    Google Scholar 

  4. S.A. Mullen, S.F. Berkovic, I.G. Commission, S.F. Berkovic, D.H. Lowenstein, M. Kato, H. Cross, P. Satishchandra, P. De Jonghe, A. Goldman et al., Genetic generalized epilepsies. Epilepsia 59(6), 1148–1153 (2018)

    Google Scholar 

  5. C.P. Panayiotopoulos, Typical absence seizures and related epileptic syndromes: assessment of current state and directions for future research. Epilepsia 49(12), 2131–2139 (2008)

    Google Scholar 

  6. H. Blumenfeld, Cellular and network mechanisms of spike-wave seizures. Epilepsia 46, 21–33 (2005)

    Google Scholar 

  7. V. Crunelli, M.L. Lőrincz, C. McCafferty, R.C. Lambert, N. Leresche, G. Di Giovanni, F. David, Clinical and experimental insight into pathophysiology, comorbidity and therapy of absence seizures. Brain 143(8), 2341–2368 (2020)

    Google Scholar 

  8. J.B. Kim, S.-I. Suh, W.-K. Seo, K. Oh, S.-B. Koh, J.H. Kim, Altered thalamocortical functional connectivity in idiopathic generalized epilepsy. Epilepsia 55(4), 592–600 (2014)

    Google Scholar 

  9. G. Kozák, T. Földi, A. Berényi, Spike-and-wave discharges are not pathological sleep spindles, network-level aspects of age-dependent absence seizure development in rats. Eneuro (2020). https://doi.org/10.1523/ENEURO.0253-19.2019

    Article  Google Scholar 

  10. N. Leresche, R.C. Lambert, A.C. Errington, V. Crunelli, From sleep spindles of natural sleep to spike and wave discharges of typical absence seizures: is the hypothesis still valid? Pflügers Arch. Eur. J. Physiol. 463(1), 201–212 (2012)

    Google Scholar 

  11. A. Lüttjohann, G. van Luijtelaar, Dynamics of networks during absence seizure’s on-and offset in rodents and man. Front. Physiol. 6, 16 (2015)

    Google Scholar 

  12. D. Pinault, M. Vergnes, C. Marescaux, Medium-voltage 5–9-hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons. Neuroscience 105(1), 181–201 (2001)

    Google Scholar 

  13. E. Sitnikova, Thalamo-cortical mechanisms of sleep spindles and spike-wave discharges in rat model of absence epilepsy (a review). Epilepsy Res. 89(1), 17–26 (2010)

    Google Scholar 

  14. G. van Luijtelaar, On the yin and yang of spike and waves. J. Physiol. 598(12), 2279–2280 (2020)

    Google Scholar 

  15. E. Sitnikova, G. van Luijtelaar, Cortical and thalamic coherence during spike-wave seizures in wag/rij rats. Epilepsy Res. 71(2–3), 159–180 (2006)

    Google Scholar 

  16. M. Sysoeva, A. Lüttjohann, G. van Luijtelaar, I. Sysoev, Dynamics of directional coupling underlying spike-wave discharges. Neuroscience 314, 75–89 (2016)

    Google Scholar 

  17. P.W. Carney, G.D. Jackson, Insights into the mechanisms of absence seizure generation provided by EEG with functional MRI. Front. Neurol. 5, 162 (2014)

    Google Scholar 

  18. C.-P. Xu, S.-W. Zhang, T. Fang, M. Manxiu, Q. Chencan, C. Huafu, H.-W. Zhu, Y.-J. Li, L. Zuxiang, Altered functional connectivity within and between brain modules in absence epilepsy: a resting-state functional magnetic resonance imaging study. BioMed Res. Int. 2013, 734893 (2013)

    Google Scholar 

  19. M. Sifuzzaman, M.R. Islam, M. Ali, Application of wavelet transform and its advantages compared to Fourier transform (Vidyasagar University, Midnapore, 2009)

    Google Scholar 

  20. K. Kato, K. Takahashi, N. Mizuguchi, J. Ushiba, Online detection of amplitude modulation of motor-related EEG desynchronization using a lock-in amplifier: Comparison with a fast Fourier transform, a continuous wavelet transform, and an autoregressive algorithm. J. Neurosci. Methods 293, 289–298 (2018)

    Google Scholar 

  21. P.S. Addison, Introduction to redundancy rules: the continuous wavelet transform comes of age (The Royal Society Publishing, London, 2018)

    MATH  Google Scholar 

  22. W. Zeng, M. Li, C. Yuan, Q. Wang, F. Liu, Y. Wang, Identification of epileptic seizures in EEG signals using time-scale decomposition (ITD), discrete wavelet transform (DWT), phase space reconstruction (PSR) and neural networks. Artif. Intell. Rev. 53(4), 3059–3088 (2020)

    Google Scholar 

  23. D. Bhati, R.B. Pachori, M. Sharma, V.M. Gadre, Automated detection of seizure and nonseizure EEG signals using two band biorthogonal wavelet filter banks, in Biomedical signal processing. (Springer, Berlin, 2020), pp.137–155

    Google Scholar 

  24. K. Sergeev, A. Runnova, M. Zhuravlev, O. Kolokolov, N. Akimova, A. Kiselev, A. Titova, A. Slepnev, N. Semenova, T. Penzel, Wavelet skeletons in sleep EEG-monitoring as biomarkers of early diagnostics of mild cognitive impairment. Chaos 31(7), 073110 (2021)

    ADS  Google Scholar 

  25. A. Runnova, M. Zhuravlev, R. Ukolov, I. Blokhina, A. Dubrovski, N. Lezhnev, E. Sitnikova, E. Saranceva, A. Kiselev, A. Karavaev et al., Modified wavelet analysis of ECOG-pattern as promising tool for detection of the blood-brain barrier leakage. Sci. Rep. 11(1), 1–8 (2021)

    Google Scholar 

  26. A. Coenen, E. Van Luijtelaar, Genetic animal models for absence epilepsy: a review of the wag/rij strain of rats. Behav. Genet. 33(6), 635–655 (2003)

    Google Scholar 

  27. E. Van Luijtelaar, A. Coenen, Two types of electrocortical paroxysms in an inbred strain of rats. Neurosci. Lett. 70(3), 393–397 (1986)

    Google Scholar 

  28. G. van Luijtelaar, F.Y. Onat, M.J. Gallagher, Animal models of absence epilepsies: what do they model and do sex and sex hormones matter? Neurobiol. Dis. 72, 167–179 (2014)

    Google Scholar 

  29. G. Van Luijtelaar, G. Van Oijen, Establishing drug effects on electrocorticographic activity in a genetic absence epilepsy model: advances and pitfalls. Front. Pharmacol. 11, 395 (2020)

    Google Scholar 

  30. E. Sitnikova, A.E. Hramov, V. Grubov, A.A. Koronovsky, Rhythmic activity in EEG and sleep in rats with absence epilepsy. Brain Res. Bull. 120, 106–116 (2016)

    Google Scholar 

  31. E. Sitnikova, Neonatal sensory deprivation promotes development of absence seizures in adult rats with genetic predisposition to epilepsy. Brain Res. 1377, 109–118 (2011)

    Google Scholar 

  32. E. Sitnikova, A.E. Hramov, V. Grubov, A.A. Koronovsky, Age-dependent increase of absence seizures and intrinsic frequency dynamics of sleep spindles in rats. Neurosci J 2014 (2014)

  33. E. Sitnikova, E.M. Rutskova, V.V. Raevsky, Reduction of epileptic spike-wave activity in wag/rij rats fostered by wistar dams. Brain Res. 1594, 305–309 (2015)

    Google Scholar 

  34. E.Y. Sitnikova, K. Smirnov, V. Grubov, A. Hramov, Diagnostic principles of immature epileptic (proepileptic) eeg activity in rats with genetic predisposition to absence epilepsy. Inform. Control Syst. 1, 89–97 (2019)

    Google Scholar 

  35. P. Halász, A. Kelemen, A. Szűcs, The role of nrem sleep micro-arousals in absence epilepsy and in nocturnal frontal lobe epilepsy. Epilepsy Res. 107(1–2), 9–19 (2013)

    Google Scholar 

  36. P. Halász, M. Terzano, L. Parrino, Spike-wave discharge and the microstructure of sleep-wake continuum in idiopathic generalised epilepsy. Neurophysiologie Clinique 32(1), 38–53 (2002)

    Google Scholar 

  37. E. Sitnikova, A.E. Hramov, V.V. Grubov, A.A. Ovchinnkov, A.A. Koronovsky, On-off intermittency of thalamo-cortical oscillations in the electroencephalogram of rats with genetic predisposition to absence epilepsy. Brain Res. 1436, 147–156 (2012)

    Google Scholar 

  38. M.K. Smyk, I.V. Sysoev, M.V. Sysoeva, G. van Luijtelaar, W.H. Drinkenburg, Can absence seizures be predicted by vigilance states? Advanced analysis of sleep-wake states and spike-wave discharges’ occurrence in rats. Epilepsy Beh. 96, 200–209 (2019)

    Google Scholar 

  39. M.K. Smyk, G. Van Luijtelaar, Circadian rhythms and epilepsy: a suitable case for absence epilepsy. Front. Neurol. 11, 245 (2020)

    Google Scholar 

  40. G. van Luijtelaar, A. Bikbaev, Midfrequency cortico-thalamic oscillations and the sleep cycle: genetic, time of day and age effects. Epilepsy Res. 73(3), 259–265 (2007)

    Google Scholar 

  41. M. Zhuravlev, A. Runnova, K. Smirnov, E. Sitnikova, Spike-wave seizures, nrem sleep and micro-arousals in wag/rij rats with genetic predisposition to absence epilepsy: Developmental aspects. Life 12(4), 576 (2022)

    ADS  Google Scholar 

  42. A. Runnova, M. Zhuravlev, A. Kiselev, R. Ukolov, K. Smirnov, A. Karavaev, E. Sitnikova, Automatic wavelet-based assessment of behavioral sleep using multichannel electrocorticography in rats. Sleep Breath. 25(4), 2251–2258 (2021)

    Google Scholar 

  43. K. Schiecke, M. Wacker, F. Benninger, M. Feucht, L. Leistritz, H. Witte, Matching pursuit-based time-variant bispectral analysis and its application to biomedical signals. IEEE Trans. Biomed. Eng. 62(8), 1937–1948 (2015)

    Google Scholar 

  44. L.W. Sheppard, V. Vuksanović, P.V. McClintock, A. Stefanovska, Oscillatory dynamics of vasoconstriction and vasodilation identified by time-localized phase coherence. Phys. Med. Biol. 56(12), 3583 (2011)

    Google Scholar 

  45. M. Le Van Quyen, J. Foucher, J.-P. Lachaux, E. Rodriguez, A. Lutz, J. Martinerie, F.J. Varela, Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony. J. Neurosci. Methods 111(2), 83–98 (2001)

    Google Scholar 

  46. V. Sakkalis, Review of advanced techniques for the estimation of brain connectivity measured with eeg/meg. Comput. Biol. Med. 41(12), 1110–1117 (2011)

    Google Scholar 

  47. V.V. Makarov, M.O. Zhuravlev, A.E. Runnova, P. Protasov, V.A. Maksimenko, N.S. Frolov, A.N. Pisarchik, A.E. Hramov, Betweenness centrality in multiplex brain network during mental task evaluation. Phys. Rev. E 98(6), 062413 (2018)

    ADS  Google Scholar 

  48. A.E. Hramov, A.A. Koronovskii, V.A. Makarov, A.N. Pavlov, E. Sitnikova, Wavelets in neuroscience (Springer, Berlin, 2015)

    MATH  Google Scholar 

  49. A.N. Pavlov, A.E. Hramov, A.A. Koronovskii, Y.E. Sitnikova, V.A. Makarov, A.A. Ovchinnikov, Wavelet analysis in neurodynamics. Phys. Usp. 55(9), 845–875 (2012)

    Google Scholar 

  50. E. Sitnikova, A.E. Hramov, V. Grubov, A.A. Koronovsky, Time-frequency characteristics and dynamics of sleep spindles in wag/rij rats with absence epilepsy. Brain Res. 1543, 290–299 (2014)

    Google Scholar 

  51. A. Bandrivskyy, A. Bernjak, P. McClintock, A. Stefanovska, Wavelet phase coherence analysis: application to skin temperature and blood flow. Cardiovasc. Eng. 4(1), 89–93 (2004)

    Google Scholar 

  52. D. Pinault, Cellular interactions in the rat somatosensory thalamocortical system during normal and epileptic 5–9 hz oscillations. J. Physiol. 552(3), 881–905 (2003)

    Google Scholar 

  53. E. Niedermeyer, Alpha rhythms as physiological and abnormal phenomena. Int. J. Psychophysiol. 26(1), 31–49 (1997). https://doi.org/10.1016/S0167-8760(97)00754-X

    Article  Google Scholar 

  54. S.W. Hughes, V. Crunelli, Thalamic mechanisms of eeg alpha rhythms and their pathological implications. Neuroscientist 11(4), 357–372 (2005)

    Google Scholar 

  55. C. Luo, Q. Li, Y. Lai, Y. Xia, Y. Qin, W. Liao, S. Li, D. Zhou, D. Yao, Q. Gong, Altered functional connectivity in default mode network in absence epilepsy: a resting-state fmri study. Hum. Brain Mapp. 32(3), 438–449 (2011)

    Google Scholar 

  56. R.A. Masterton, P.W. Carney, G.D. Jackson, Cortical and thalamic resting-state functional connectivity is altered in childhood absence epilepsy. Epilepsy Res. 99(3), 327–334 (2012)

    Google Scholar 

  57. X. Bai, J. Guo, B. Killory, M. Vestal, R. Berman, M. Negishi, N. Danielson, E. Novotny, R. Constable, H. Blumenfeld, Resting functional connectivity between the hemispheres in childhood absence epilepsy. Neurology 76(23), 1960–1967 (2011)

    Google Scholar 

  58. A.M. Mishra, X. Bai, J.E. Motelow, M.N. DeSalvo, N. Danielson, B.G. Sanganahalli, F. Hyder, H. Blumenfeld, Increased resting functional connectivity in spike-wave epilepsy in wag/rij rats. Epilepsia 54(7), 1214–1222 (2013)

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the RF Government Grant No. 075-15-2022-1094 in part of the biophysical interpretation. In the part of the development of numeric method of data analysis, this work has been supported by of the Government Procurement of the Russian Federation Ministry of Healthcare No. 056-00030-21-01 of May 02, 2021 Theoretical and Experimental Study of the Integrative Activity of Various Physiological Systems of Patient under Stress (the State registration number 121030900357-3). The experimental work was carried out with the support of the Ministry of Education and Science of the Russian Federation within the state assignment of Institute of Higher Nervous Activity for 2021–2023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksim Zhuravlev.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sitnikova, E., Rutskova, E., Smirnov, K. et al. Intracortical synchronization pattern on the preclinical and clinical stages of absence epilepsy (analysis of wavelet bicoherence in WAG/Rij rats). Eur. Phys. J. Spec. Top. 232, 583–594 (2023). https://doi.org/10.1140/epjs/s11734-022-00719-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00719-y

Navigation