Skip to main content
Log in

Desupersaturation dynamics in metastable solutions with ellipsoidal crystals

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

This paper develops a theory of the evolution of a polydisperse ensemble of ellipsoidal crystals in supersaturated solutions at an intermediate phase transition stage. The mathematical model of the process takes into account the “diffusion” mechanism of the crystal distribution function in the space of their volumes, as well as various kinetics of particle nucleation. The law for the growth rate of individual ellipsoidal crystals was derived and a complete analytical solution describing the evolution of an ensemble of such crystals was obtained. The evolutionary behavior of the supersaturation removal in a metastable solution is analyzed and the crystal-volume distribution function is determined. The theory under study is compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.W. Mullin, Crystallization (Butterworth, London, 1972)

    Google Scholar 

  2. S. Martin, P. Kauffman, J. Fluid Mech. 64, 507 (1974)

    Article  ADS  Google Scholar 

  3. U. Volmer, Control Eng. Pract. 9, 837 (2001)

    Article  Google Scholar 

  4. D.V. Alexandrov, A.P. Malygin, Dokl. Earth Sci. 411, 1407 (2006)

    Article  ADS  Google Scholar 

  5. D.V. Alexandrov, A.P. Malygin, I.V. Alexandrova, Ann. Glaciol. 44, 118 (2006)

    Article  ADS  Google Scholar 

  6. K.F. Kelton, A.L. Greer, Nucleation in Condensed Matter: Applications in Materials and Biology (Elsevier, Amsterdam, 2008)

    Google Scholar 

  7. P.G. Vekilov, Cryst. Growth Des. 10, 5007 (2010)

    Article  Google Scholar 

  8. D.V. Alexandrov, A.P. Malygin, Phys. Earth Planet. Inter. 189, 134 (2011)

    Article  ADS  Google Scholar 

  9. D.V. Alexandrov, A.V. Netreba, A.P. Malygin, Int. J. Heat Mass Trans. 55, 1189 (2012)

    Article  Google Scholar 

  10. A. Rachah, D. Noll, F. Espitalier, F. Baillon, Math. Methods Appl. Sci. 39, 1101 (2015)

    Article  Google Scholar 

  11. P.K. Galenko, D.V. Alexandrov, Philos. Trans. R. Soc. A 376, 20170210 (2018)

    Article  ADS  Google Scholar 

  12. O.V. Gusakova, P.K. Galenko, V.G. Shepelevich, D.V. Alexandrov, M. Rettenmayr, Philos. Trans. R. Soc. A 377, 20180204 (2019)

    Article  ADS  Google Scholar 

  13. V.P. Skripov, Metastable Liquids (Wiley, New York, 1974)

    Google Scholar 

  14. Yu.A. Buyevich, D.V. Alexandrov, V.V. Mansurov, Macrokinetics of Crystallization (Begell House, NewYork, 2001)

    Google Scholar 

  15. A.C. Zettlemoyer, Nucleation (Dekker, New York, 1969)

    Google Scholar 

  16. Yu.A. Buyevich, Yu.M. Goldobin, G.P. Yasnikov, Int. J. Heat Mass Trans. 37, 3003 (1994)

    Article  Google Scholar 

  17. V.A. Shneidman, Phys. Rev. E 82, 031603 (2010)

    Article  ADS  Google Scholar 

  18. V.A. Shneidman, Phys. Rev. E 84, 031602 (2011)

    Article  ADS  Google Scholar 

  19. Y.A. Buyevich, D.V. Alexandrov, IOP Conf. Ser. Mater. Sci. Eng. 192, 012001 (2017)

    Article  Google Scholar 

  20. D.V. Alexandrov, Eur. Phys. J. Spec. Top. 229, 383 (2020)

    Article  Google Scholar 

  21. I.V. Alexandrova, D.V. Alexandrov, Philos. Trans. R. Soc. A 378, 20190245 (2020)

    Article  ADS  Google Scholar 

  22. Yu.A. Buyevich, V.V. Mansurov, J. Cryst. Growth 104, 861 (1990)

    Article  ADS  Google Scholar 

  23. D.V. Alexandrov, A.P. Malygin, J. Phys. A Math. Theor. 46, 455101 (2013)

    Article  ADS  Google Scholar 

  24. E.V. Makoveeva, D.V. Alexandrov, Philos. Mag. Lett. 98, 199 (2018)

    Article  ADS  Google Scholar 

  25. D.V. Alexandrov, J. Phys. A Math. Theor. 47, 125102 (2014)

    Article  ADS  Google Scholar 

  26. D.V. Alexandrov, Philos. Mag. Lett. 94, 786 (2014)

    Article  ADS  Google Scholar 

  27. E.V. Makoveeva, D.V. Alexandrov, Eur. Phys. J. Spec. Top. 229, 375 (2020)

    Article  Google Scholar 

  28. M.V. Fedoruk, Saddle-Point Method (Nauka, Moscow, 1977)

    Google Scholar 

  29. D.V. Alexandrov, A.P. Malygin, Modell. Simul. Mater. Sci. Eng. 22, 015003 (2014)

    Article  ADS  Google Scholar 

  30. D.V. Alexandrov, I.G. Nizovtseva, Proc. R. Soc. A 470, 20130647 (2014)

    Article  ADS  Google Scholar 

  31. D.V. Alexandrov, Phys. Lett. A 378, 1501 (2014)

    Article  ADS  Google Scholar 

  32. D.V. Alexandrov, I.G. Nizovtseva, Philos. Trans. R. Soc. A 377, 20180214 (2019)

    Article  ADS  Google Scholar 

  33. E.V. Makoveeva, D.V. Alexandrov, Phys. Lett. A 384, 126259 (2020)

    Article  MathSciNet  Google Scholar 

  34. E.V. Makoveeva, D.V. Alexandrov, Eur. Phys. J. Spec. Top. 229, 2923 (2020)

    Article  Google Scholar 

  35. D.V. Alexandrov, I.V. Alexandrova, A.A. Ivanov, Int. J. Heat Mass Trans. 126, 1031 (2018)

    Article  Google Scholar 

  36. D.V. Alexandrov, Chem. Eng. Sci. 117, 156 (2014)

    Article  Google Scholar 

  37. E.V. Makoveeva, D.V. Alexandrov, Philos. Trans. R. Soc. A 376, 20170327 (2018)

    Article  ADS  Google Scholar 

  38. E.V. Makoveeva, D.V. Alexandrov, Philos. Trans. R. Soc. A 377, 20180210 (2019)

    Article  ADS  Google Scholar 

  39. A.A. Ivanov, I.V. Alexandrova, D.V. Alexandrov, Philos. Trans. R. Soc. A 377, 20180215 (2019)

    Article  ADS  Google Scholar 

  40. E.V. Makoveeva, D.V. Alexandrov, Eur. Phys. J. Spec. Top. 228, 25 (2019)

    Article  Google Scholar 

  41. M. Ocaña, M.P. Morales, C.J. Serna, J. Colloid Int. Sci. 171, 85 (1995)

    Article  ADS  Google Scholar 

  42. T. Sugimoto, A. Muramatsu, J. Colloid Int. Sci. 184, 626 (1996)

    Article  ADS  Google Scholar 

  43. G.A. Korn, T.M. Korn, Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review (McGraw-Hill Book Company, New York, 1968)

    MATH  Google Scholar 

  44. D.A. Barlow, J. Cryst. Growth 311, 2480 (2009)

    Article  ADS  Google Scholar 

  45. D.A. Barlow, J. Cryst. Growth 470, 8 (2017)

    Article  ADS  Google Scholar 

  46. D.V. Alexandrov, J. Phys. A Math. Theor. 51, 075102 (2018)

    Article  ADS  Google Scholar 

  47. D.V. Alexandrov, I.V. Alexandrova, Philos. Trans. R. Soc. A 377, 20180209 (2019)

    Article  ADS  Google Scholar 

  48. M.A. Nikishina, D.V. Alexandrov, Math. Methods Appl. Sci. 44, 12252 (2020)

    Article  Google Scholar 

  49. M.A. Nikishina, D.V. Alexandrov, Eur. Phys. J. Spec. Top. 229, 2937 (2020)

    Article  Google Scholar 

  50. E.M. Lifshitz, L.P. Pitaevskii, Physical Kinetics (Pergamon, Oxford, 1981)

    Google Scholar 

  51. A. Randolph, M. Larson, Theory of Particulate Processes (Academic Press, San Diego, 1988)

    Google Scholar 

  52. R.C. Zumstein, R.W. Rousseau, AIChE J. 33, 121 (1987)

    Article  Google Scholar 

  53. V.A. Ditkin, A.P. Prudnikov, Integral Transforms and Operational Calculus (Pergamon Press, Oxford, 1965)

    MATH  Google Scholar 

  54. Yu.A. Buyevich, A.O. Ivanov, Physica A 193, 221 (1993)

    Article  ADS  Google Scholar 

  55. J. Schlichtkrull, Acta Chem. Scand. 11, 1248 (1957)

    Article  Google Scholar 

  56. J. Schlichtkrull, Acta Chem. Scand. 11, 439 (1957)

    Article  Google Scholar 

  57. I.M. Lifshitz, V.V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961)

    Article  ADS  Google Scholar 

  58. V.V. Slezov, V.V. Sagalovich, Sov. Phys. Usp. 30, 23 (1987)

    Article  ADS  Google Scholar 

  59. V.V. Slezov, Kinetics of First-Order Phase Transitions (Wiley, VCH, Weinheim, 2009)

    Book  Google Scholar 

  60. D.V. Alexandrov, J. Phys. Condens. Matter 28, 035102 (2016)

    Article  ADS  Google Scholar 

  61. D.V. Alexandrov, J. Phys. Chem. Solids 91, 48 (2016)

    Article  ADS  Google Scholar 

  62. A.V. Alyab’eva, Yu.A. Buyevich, V.V. Mansurov, J. Phys. II (Fr.) 4, 951 (1994)

    Google Scholar 

  63. D.V. Alexandrov, I.V. Alexandrova, Philos. Trans. R. Soc. A 378, 20190247 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The theoretical part of this work is supported by the Russian Science Foundation (Grant no. 18-19-00008). Numerical calculations were performed due to the support from the Ministry of Science and Higher Education of the Russian Federation [project no. FEUZ-2020-0057].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri V. Alexandrov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nikishina, M.A., Alexandrov, D.V. Desupersaturation dynamics in metastable solutions with ellipsoidal crystals. Eur. Phys. J. Spec. Top. 231, 1107–1113 (2022). https://doi.org/10.1140/epjs/s11734-022-00525-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-022-00525-6

Navigation