Skip to main content
Log in

Multi-pulse chaotic dynamics and global dynamics analysis of circular mesh antenna with three-degree-of-freedom system

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In the complex space environment, the antenna of the running satellite may cause large amplitude nonlinear vibrations. In scientific experiments, it is difficult to simulate the state for the operation of the antenna. To study the nonlinear dynamic behaviors of the circular mesh antenna, the dynamic models and dynamic equations are established. First, the circular mesh antenna is simplified to an equivalent cylindrical shell structure. Then, the high-dimensional nonlinear dynamic equation is derived. The dynamic equations of the circular mesh antenna are discrete by the third-order Galerkin method. The breathing vibration nonlinear equations with three-degree-of-freedom are obtained. The nonlinear ordinary equations are simplified to be a topological equivalent nonlinear equation. The topological equivalent nonlinear equation under the conditions of the unperturbed and perturbed situations is analyzed, respectively. Based on the energy phase method of Haller and Wiggins, this theory for the six-dimensional system is extended and improved. The multi-pulse chaotic motion of the circular mesh antenna system is verified by the extended energy phase method. The geometric structure of the three jumping pulses in the six-dimensional phase space is described in the first time. Finally, numerical simulation is used to verify the theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Meguro, A. Tsujihata, N. Hamamoto, Technology status of the 13m aperture deployment antenna reflectors for engineering test satellite. Acta Astronaut. 47, 147–152 (2000)

    Article  ADS  Google Scholar 

  2. W. Thomson, Astro-Mesh deployable reflectors for Ku-and Ka-Band commercial satellites, AIAA, pp. 2002–2032 (2002)

  3. W. Thomson, The astromesh deployable reflector. IEEE Antennas Propag. Soc. Int. Symp. (APSURSI) 3, 1516–1519 (2002)

    Google Scholar 

  4. W. Gao, X.P. Zhang, Z.Q. Yao, Simulation and analysis of flexible solar panels’ deployment and locking processes. J. Shanghai Jiaotong Univ. (Sci.) 13, 275–279 (2008)

    Article  Google Scholar 

  5. J. Li, C. Zhu, Research on motion simulation of spherical robot based on virtual prototype technology with ADAMS. J. Syst. Simul. 18, 1026–1029 (2006)

    Google Scholar 

  6. K. Ghosh, M.R. Kumar, Dynamic analysis of supporting structure of mobile antenna. Comput. Struct. 63, 633–637 (1997)

    Article  Google Scholar 

  7. I. Gulyaev, V.V. Gaidaichuk, A.G. Chernyavskii, L. Scialino, Dynamic behavior of a large deployable reflector. Int. Appl. Mech. 39, 1084–1088 (2003)

    Article  ADS  Google Scholar 

  8. C. Li, Q. Liu, H. Tian, Y. Hu, Y. Song, Dynamics of a deployable mesh reflector of satellite antenna: parallel computation and deployment simulation. J. Comput. Nonlinear Dyn. 11, 041017 (2016)

    Article  Google Scholar 

  9. Y. Hu, Q. Tian, C. Liu, Computational dynamics of soft machines. Acta. Mech. Sin. 3, 516–528 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  10. J. Li, Y. Wang, Deployment dynamic analysis of deployable antennas considering thermal effect. Aerosp. Sci. Technol. 13, 210–215 (2009)

    Article  Google Scholar 

  11. J. Li, Deployment analysis and control of deployable space antennal. Aerosp. Sci. Technol. 18, 42–47 (2012)

    Article  ADS  Google Scholar 

  12. Pellicano, Dynamic stability and sensitivity to geometric imperfections of strongly compressed circular cylindrical shells under dynamic axial loads. Commun. Nonlinear Sci. Numer. Simul. 14, 3449–3462 (2009)

    Article  ADS  Google Scholar 

  13. J. Zhang, Y. Chen, Sun, Nonlinear breathing vibrations and chaos of a circular truss antenna with 1:2 internal resonance. Int. J. Bifurc. Chaos 26, 1650077 (2016)

    Article  Google Scholar 

  14. Liu, W. Zhang, J.F. Wang, Nonlinear dynamics of composite laminated circular cylindrical shell with membranes at both ends and clamped on one side. Nonlinear Dyn. 90, 1393–1417 (2017)

    Article  Google Scholar 

  15. W. Zhang, S.W. Yang, J.J. Mao, Nonlinear radial breathing vibrations of CFRP laminated cylindrical shell with non-normal boundary conditions subjected to axial pressure and radial line load at two ends. Compo. Struct. 190, 52–78 (2018)

    Article  Google Scholar 

  16. W. Zhang, Q.L. Wu, M.H. Yao, E.H. Dowell, Analysis on global and chaotic dynamics of nonlinear wave equations for truss core sandwich plate. Nonlinear Dyn. 94, 1393–1417 (2017)

    Google Scholar 

  17. T.J. Kaper, G. Kovacic, Multi-bump orbits homoclinic to resonance bands. Trans. Am. Math. Soc. 348, 3835–3887 (1996)

    Article  MathSciNet  Google Scholar 

  18. R. Camassa, G. Kovacic, S.K. Tin, A Melnikov method for homoclinic orbits with many pulses. Arch. Ration. Mech. Anal. 143, 105–193 (1998)

    Article  MathSciNet  Google Scholar 

  19. G. Haller, S. Wiggins, Orbits homoclinic to resonances: the Hamiltonian case. Phys. D 66, 298–346 (1993)

    Article  MathSciNet  Google Scholar 

  20. G. Haller, S. Wiggins, Multi-pulse jumping orbits and homoclinic trees in a modal truncation of the damped-forced nonlinear Schrodinger equation. Phys. D 85, 311–347 (1995)

    Article  MathSciNet  Google Scholar 

  21. G. Haller, G. Menon, V.M. Rothos, Shilnikov manifolds in coupled nonlinear Schrodinger equations. Phys. Lett. A 263, 175–185 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  22. R.J. Mc-donald, N. Sri-namachchivaya, Pipes conveying pulsating fluid near a 0:1 resonance: local bifurcations. J. Fluid. Struct. 21, 629–664 (2005)

    Article  Google Scholar 

  23. H. Yao, W. Zhang, Shilnikov type multi-pulse orbits and chaotic dynamics of a parametrically and externally excited rectangular thin plate. Int. J. Bifurc. Chaos 17, 851–875 (2007)

    Article  Google Scholar 

  24. M.J. Zhang, M.H. Gao, Yao, Higher-dimensional chaotic dynamics of a composite laminated piezoelectric rectangular plate. Sci. China Phys. Mech. Astron. 52, 1989–2000 (2009)

    Article  ADS  Google Scholar 

  25. M. Zhang, F.Q. Chen, F. Li, Multi-pulse orbits and chaotic dynamics of a symmetric cross-ply composite laminated cantilever rectangular plate. Nonlinear Dyn. 83, 253–267 (2016)

    Article  MathSciNet  Google Scholar 

  26. J. Yu, S. Zhou, W. Zhang, Multi-pulse chaotic dynamics of an unbalanced Jeffcott rotor with gravity effect. Nonlinear Dyn. 87, 647–664 (2017)

    Article  Google Scholar 

  27. H. Yao, W. Zhang, Multi-pulse chaotic motions of high-dimension nonlinear system for a laminated composite piezoelectric rectangular plate. Meccanica 49, 365–392 (2014)

    Article  MathSciNet  Google Scholar 

  28. H. Zhang, W. Zhang, M.H. Yao, Multi-pulse Silnikov chaotic dynamics for a non-autonomous buckled thin plate under parametric excitation. Int. J. Nonlinear Sci. Numur. 9, 381–394 (2008)

    Google Scholar 

  29. W. Zhang, W.L. Hao, Multi-pulse chaotic dynamics of six-dimensional non-autonomous nonlinear system for a composite laminated piezoelectric rectangular plate. Nonlinear Dyn. 73, 1005–1033 (2010)

    Article  MathSciNet  Google Scholar 

  30. X. An, F.Q. Chen, Multi-pulse chaotic motions of functionally graded truncated conical shell under complex loads. Nonlinear Dyn. 89, 1753–1778 (2017)

    Article  MathSciNet  Google Scholar 

  31. S. Jiang, J. Li, W. Zhang, Bifurcation of periodic solutions and its maximum number in a circular mesh antenna system with 1:2 internal resonance. J. Phys. Conf. Ser. 1622, 012003 (2020)

    Article  Google Scholar 

  32. Y. Sun, W. Zhang, M.H. Yao, Multi-pulse chaotic dynamics of circular mesh antenna with 1:2 internal resonance. Int. J. Appl. Mech. 9, 1750060 (2017)

    Article  Google Scholar 

  33. W. Zhang, M.J. Gao, M.H. Yao, Global analysis and chaotic dynamics of six-dimensional nonlinear system for an axially moving viscoelastic belt. Int. J. Mod. Phys. B 25, 2299–2322 (2011)

    Article  ADS  Google Scholar 

  34. N. Reddy, Mechanics of Laminated Composite Plates and Shells: Theory and Analysis (CRC Press, Boca Raton, 2003)

    Book  Google Scholar 

  35. H. Nayfeh, D.T. Mook, Nonlinear Oscillations (Wiley, New York, 1979)

    MATH  Google Scholar 

  36. T. Liu, W. Zhang, Y. Zheng, Andronov-Hopf bifurcations, Pomeau-Manneville intermittent chaos and nonlinear vibrations of large deployable space antenna subjected to thermal load and radial pre-stretched membranes with 1:3 internal resonance. Chaos Solitons Fractals Interdiscip. J. Nonlinear Sci. Nonequilib. Complex Phenom. 144, 110719 (2021)

  37. W. Zhang, F.X. Wang, J.W. Zu, Computation of normal forms for high dimensional nonlinear systems and application to nonplanar motions of a cantilever beam. J. Sound Vib. 278, 949–974 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of National Natural Science Foundation of China (NNSFC) through Grant nos. 11902038 and Beijing Information Science and Technology University Foundation through Grant nos. 1925028.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Sun.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Appendix A

Appendix A

The nonlinear transformations in Eq. (18) are presented as follows:

$$\begin{aligned} x_{\text{1 }}= & {} -\frac{\text{3 }}{16}\alpha _{14} y_{1} ^{\text{3 }}-\frac{\text{9 }}{8}\alpha _{14} y_{1} y_{2} ^{\text{2 }}-\frac{\text{1 }}{4}\alpha _{21} y_{1} y_{3}^{\text{2 }}\nonumber \\&-\frac{\text{1 }}{4}\alpha _{21} y_{1} y_{4} ^{\text{2 }}-\frac{\text{1 }}{4}\alpha _{25} y_{1} y_{5} ^{\text{2 }}-\frac{\text{1 }}{4}\alpha _{25} y_{1} y_{6}^{\text{2 }}, \end{aligned}$$
(A1)
$$\begin{aligned} x_{2}= & {} \frac{9}{16}\alpha _{14} y_{1}^{2}y_{2} , \end{aligned}$$
(A2)
$$\begin{aligned} x_{\text{3 }}= & {} -\frac{\text{9 }\beta _{15} }{32\sigma _{2} }y_{3} ^{\text{3 }}+\frac{\text{9 }\beta _{15} }{32\sigma _{2} }y_{4} ^{\text{3 }}\nonumber \\&-\frac{\text{3 }\beta _{24} }{4\left( {3\sigma _{2} -2\sigma _{3} } \right) }y_{1}^{2}y_{5} +\frac{\text{3 }\beta _{24} y_{2}^{2}y_{5} }{4}\left[ {\left( {81\sigma _{2}^{4}} \right. } \right. -72\sigma _{2} ^{2}\sigma _{3}^{2}\nonumber \\&+16\sigma _{3}^{4}-129\sigma _{2}^{3}+864\sigma _{2}^{2}\sigma _{3} -576\sigma _{2} \sigma _{3}^{2}+384\sigma _{3}^{3}\nonumber \\&\quad +10368\sigma _{2} ^{2}+13824\sigma _{2} \sigma _{3}\nonumber \\&\left. +4608\sigma _{3}^{2} \right) /\left( 234\sigma _{2}^{5}-162\sigma _{2}^{4}\sigma _{3} \nonumber \right. \\&-216\sigma _{2}^{3}\sigma _{3}^{2} \nonumber \\&+144\sigma _{2}^{2}\sigma _{3}^{3}-162\sigma _{2}^{4}\sigma _{3}\nonumber \\&-216\sigma _{2}^{3}\sigma _{3}^{2}+144\sigma _{2} ^{2}\sigma _{3}^{3}\nonumber \\&\left. \left. +48\sigma _{2} \sigma _{3}^{4}-32\sigma _{3}^{5} \right) \right] +\frac{8\beta _{24} y_{2} y_{3}^{2}}{9\sigma _{2} ^{2}}+\frac{9\beta _{15} y_{3}^{2}y_{4} }{16\sigma _{2} }\nonumber \\&-\frac{8\beta _{24} y_{2} y_{\text{4 }}^{2}}{9\sigma _{2}^{2}}-\frac{9\beta _{15} y_{3} y_{4}^{2}}{16\sigma _{2} }+\frac{\beta _{23} y_{3} y_{5} ^{2}}{4\sigma _{2} }\nonumber \\&-\frac{\beta _{23} y_{4} y_{5}^{2}}{4\sigma _{2} }+\frac{\beta _{23} y_{3} y_{6}^{2}}{4\sigma _{2} }-\frac{\beta _{23} y_{4} y_{6}^{2}}{4\sigma _{2} } \nonumber \\&-\frac{\beta _{20} y_{1} y_{2} y_{4} }{16}+\frac{\beta _{24} y_{1} y_{3} y_{4} }{6\sigma _{2} }\nonumber \\&+\frac{\text{3 }\left( {\text{3 }\sigma _{2} \sigma _{\text{3 }} -2\sigma _{3}^{2}-36\sigma _{2} -24\sigma _{3} } \right) \beta _{24} y_{1} y_{2} y_{6} }{27\sigma _{2}^{3}-18\sigma _{2}^{2}\sigma _{3} -12\sigma _{2} \sigma _{3}^{2}+8\sigma _{3}^{3}}, \end{aligned}$$
(A3)
$$\begin{aligned} x_{\text{4 }}= & {} -\frac{\text{27 }\beta _{15} }{32\sigma _{2} }y_{3} ^{\text{3 }}-\frac{\text{27 }\beta _{15} }{32\sigma _{2} }y_{\text{4 }} ^{\text{3 }}\nonumber \\&-\frac{\text{3 }\beta _{24} }{4\left( {3\sigma _{2} -2\sigma _{3} } \right) }y_{1}^{2}y_{\text{6 }}\nonumber \\&+\frac{\text{3 }\beta _{24} y_{2} ^{2}y_{\text{6 }} }{4}\left[ {\left( {81\sigma _{2}^{4}-72\sigma _{2} ^{2}\sigma _{3}^{2}} \right. } \right. \nonumber \\&-\text{1728 }\sigma _{2}^{2}\sigma _{3} \nonumber \\&+1152\sigma _{2} \sigma _{3} ^{2}+10368\sigma _{2}^{2}\nonumber \\&\left. +13824\sigma _{2} \sigma _{3} +4608\sigma _{3} ^{2} \right) /\left( {243} \right. \sigma _{2}^{5} \quad -162\sigma _{2}^{4}\sigma _{3} \nonumber \\&-216\sigma _{2}^{3}\sigma _{3}^{2}+144\sigma _{2}^{2}\sigma _{3}^{3}\nonumber \\&\left. \left. +48\sigma _{2} \sigma _{3} ^{4}-32\sigma _{3}^{5} \right) \right] \nonumber \\&-\frac{\beta _{24} y_{1} y_{3} ^{2}}{6\sigma _{2} }+\frac{\beta _{24} y_{1} y_{4}^{2}}{6\sigma _{2} } \nonumber \\&+\frac{\beta _{20} y_{1} y_{2} y_{3} }{16}-\frac{\text{9 }\left( {\text{3 }\sigma _{2}^{2}-2\sigma _{2} \sigma _{3} -24\sigma _{2} -16\sigma _{3} } \right) \beta _{24} y_{1} y_{2} y_{5} }{2\left( {27\sigma _{2} ^{3}-18\sigma _{2}^{2}\sigma _{3} -12\sigma _{2} \sigma _{3}^{2}+8\sigma _{3}^{3}} \right) }\nonumber \\&+\frac{20\beta _{24} y_{2} y_{3} y_{4} }{9\sigma _{2} ^{2}}, \end{aligned}$$
(A4)
$$\begin{aligned} x_{\text{5 }}= & {} -\frac{\text{9 }\gamma _{1\text{6 }} }{32\sigma _{\text{3 }} }y_{\text{5 }}^{\text{3 }}+\frac{\gamma _{\text{20 }} }{\text{2 }\left( {3\sigma _{2} -2\sigma _{3} } \right) }y_{1}^{2}y_{\text{3 }} \nonumber \\&+\frac{\gamma _{\text{20 }} }{\text{96 }}y_{1}^{2}y_{\text{6 }} -\frac{\gamma _{\text{20 }} y_{2}^{2}y_{3} }{2}\left[ {\left( {81\sigma _{2}^{4}-72\sigma _{2} ^{2}\sigma _{3}^{2}} \right. } \right. \nonumber \\&+16\sigma _{3}^{4}-864\sigma _{2}^{2}\sigma _{3} +576\sigma _{2} \sigma _{3}^{2}-384\sigma _{3}^{3}\nonumber \\&+10368\sigma _{2}^{2}+13824\sigma _{2} \sigma _{3} +1296\sigma _{2}^{3} \nonumber \\&\quad \left. +4608\sigma _{3}^{2} \right) /\left( {243} \right. \sigma _{2} ^{5}-162\sigma _{2}^{4}\sigma _{3} -216\sigma _{2}^{3}\sigma _{3} ^{2}+144\sigma _{2}^{2}\sigma _{3}^{3}\nonumber \\&+48\sigma _{2} \sigma _{3} ^{4}\left. {\left. {-32\sigma _{3}^{5}} \right) } \right] \nonumber \\&-\frac{1296\gamma _{16} \sigma _{2} \sigma _{3} y_{2}^{2}y_{4} }{81\sigma _{2}^{4}-72\sigma _{2}^{2}\sigma _{3}^{2}+16\sigma _{3} ^{4}}\nonumber \\&-\frac{3\gamma _{20} y_{2}^{2}y_{\text{6 }} }{2\sigma _{3} ^{2}}\nonumber \\&+\frac{9\gamma _{16} y_{1} y_{2} y_{3} }{9\sigma _{2}^{2}-4\sigma _{3} ^{2}}-\frac{9\gamma _{16} y_{5} y_{6}^{2}}{16\sigma _{3} } \nonumber \\&+\frac{\gamma _{20} y_{1} y_{2} y_{5} }{8\sigma _{3} }-\frac{\gamma _{24} y_{1} y_{2} y_{6} }{24}\nonumber \\&-\frac{\text{3 }\left( {\text{3 }\sigma _{2} ^{2}-2\sigma _{2} \sigma _{3} +24\sigma _{2} +16\sigma _{3} } \right) \gamma _{20} y_{1} y_{2} y_{4} }{27\sigma _{2}^{3}-18\sigma _{2}^{2}\sigma _{3} -12\sigma _{2} \sigma _{3}^{2}+8\sigma _{3}^{3}}, \end{aligned}$$
(A5)
$$\begin{aligned} x_{\text{6 }}= & {} -\frac{\text{27 }\gamma _{1\text{6 }} }{32\sigma _{\text{3 }} }y_{\text{6 }}^{\text{3 }}+\frac{\gamma _{\text{20 }} }{\text{2 }\left( {3\sigma _{2} -2\sigma _{3} } \right) }y_{1}^{2}y_{\text{4 }} -\frac{\gamma _{\text{20 }} }{\text{96 }}y_{1}^{2}y_{\text{5 }} \nonumber \\&+\frac{108\left( {3\sigma _{2}^{2}+4\sigma _{3}^{2}} \right) \gamma _{16} y_{2}^{2}y_{3} }{81\sigma _{2}^{4}-72\sigma _{2}^{2}\sigma _{3}^{2}+16\sigma _{3}^{4}}\nonumber \\&-\frac{\gamma _{\text{20 }} y_{2}^{2}y_{4} }{2}\left[ {\left( {81\sigma _{2} ^{4}-72\sigma _{2}^{2}\sigma _{3}^{2}+16\sigma _{3}^{4}} \right. } \right. +1728\sigma _{2}^{2}\sigma _{3} \nonumber \\&\left. \left. -1152\sigma _{2} \sigma _{3} ^{2}+10368\sigma _{2}^{2}+13824\sigma _{2} \sigma _{3} +4608\sigma _{3}^{2} \right) \right] /\left( {243} \right. \sigma _{2}^{5}\nonumber \\&-162\sigma _{2} ^{4}\sigma _{3}-216\sigma _{2}^{3}\sigma _{3}^{2}+144\sigma _{2} ^{2}\sigma _{3}^{3}\nonumber \\&\left. {+48\sigma _{2} \sigma _{3}^{4}-32\sigma _{3}^{5}} \right) -\frac{\gamma _{20} y_{1} y_{2} y_{6} }{8\sigma _{3} }+\frac{27\sigma _{2} \gamma _{16} y_{1} y_{2} y_{4} }{2\left( {9\sigma _{2}^{2}-4\sigma _{3}^{2}} \right) }\nonumber \\&+\frac{\gamma _{24} y_{1} y_{2} y_{5} }{24} \nonumber \\&-\frac{\text{2 }\left( {3\sigma _{2} \sigma _{3} -2\sigma _{3}^{2}+36\sigma _{2} +24\sigma _{3} } \right) \gamma _{20} y_{1} y_{2} y_{3} }{27\sigma _{2} ^{3}-18\sigma _{2}^{2}\sigma _{3} -12\sigma _{2} \sigma _{3}^{2}+8\sigma _{3}^{3}}. \end{aligned}$$
(A6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Zhang, W., Yao, M.h. et al. Multi-pulse chaotic dynamics and global dynamics analysis of circular mesh antenna with three-degree-of-freedom system. Eur. Phys. J. Spec. Top. 231, 2307–2324 (2022). https://doi.org/10.1140/epjs/s11734-021-00366-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00366-9

Navigation