Skip to main content
Log in

A new fractional-order 2D discrete chaotic map and its DSP implement

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

In the paper, a novel 2D discrete chaotic system was constructed and the solution of numeric of the matching fractional-order chaotic system is obtained. The dynamical behaviors of the discrete chaotic map are analyzed by attractor phase diagram, bifurcation diagram, maximum Lyapunov exponent and complexity analysis. Particularly, the fractal and the fractal dimension of discrete chaotic map is verified via the bifurcation diagram. Numerical simulation results show that the chaotic map has a variety of coexistence of attractors, such as the coexistence of chaos and chaos, the coexistence of chaos and period, and the coexistence of period and quasi-period. In addition, we also found that the position of the attractor’s trajectory in the phase space can be flexibly controlled by the parameter c. Finally, the chaotic map is achieved on the DSP platform. Experiments show that the discrete system has rich dynamical characteristics and has the vital prospect in the application of secure communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. C. Liu, L. Ling, L. Tao, A novel three-dimensional autonomous chaos system. Acta Phys. Sin. 39(4), 1950–1958 (2009)

    MATH  Google Scholar 

  2. J.L. Zhao, W. Jing, W. Wei, Approximate finite-time stable control of Lorenz Chaos system. Acta Phys. Sin. 60(10), 687–709 (2011)

    MATH  Google Scholar 

  3. B.R. Hunt, T.Y. Li, J.A. Kennedy, H.E. Nusse, Period Three Implies Chaos (Springer, New York, 2004), pp. 77–84

    Google Scholar 

  4. K.T. Alligood, T.D. Sauer, J.A. Yorke, Chaos: an introduction to dynamical systems. Phys. Today 50(11), 67–68 (1997)

    MATH  Google Scholar 

  5. C. Sparrow, The Lorenz equations: bifurcations, chaos, and strange attractors. Appl. Math. Sci. 41(1), 106–110 (1982)

    MathSciNet  MATH  Google Scholar 

  6. A. Simmonds, S.K. Paul, Chaos-standard identifiers for electronic information. Aganist Grain 9, 33–36 (2013)

    Google Scholar 

  7. A. Abel, W. Schwarz, Chaos communications-principles, schemes, and system analysis. Proc. IEEE 90(5), 691–710 (2002)

    Google Scholar 

  8. H. Wang, Z.Z. Han, Q.Y. Xie, Z. Wei, Finite-time chaos control via nonsingular terminal sliding mode control. Commun. Nonlinear Sci. Numer. Simul. 14(6), 2728–2733 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  9. C. Adler, R. Kneusel, W. Younger, Chaos, number theory, and computers. J. Comput. Phys. 166(1), 165–172 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  10. J. Stark, K. Hardy, Mathematics chaos: useful at last? Science 301(5637), 1192 (2003)

    Google Scholar 

  11. P.S. Julienne, Low-temperature physics: chaos in the cold. Nature 507(7493), 440 (2014)

    ADS  Google Scholar 

  12. X. Ma, J. Mou, J. Liu, C. Ma, X. Zhao, A novel simple chaotic circuit based on memristor-memcapacitor. Nonlinear Dyn. 100(5), 2859–2876 (2020)

    Google Scholar 

  13. R. Guesmi, M. Farah, A. Kachouri, M. Samet, A novel chaos-based image encryption using DNA sequence operation and Secure Hash Algorithm SHA-2. Nonlinear Dyn. 83(3), 1–14 (2016)

    MathSciNet  MATH  Google Scholar 

  14. X. Chai, Y. Chen, L. Broyde, A novel chaos-based image encryption algorithm using DNA sequence operations. Opt. Lasers Eng. 88, 197–213 (2017)

    Google Scholar 

  15. R. Guesmi, M.B. Farah, A. Kachouri, M. Samet, Hash key-based image encryption using crossover operator and chaos. Multimedia Tools Appl. 75(8), 1–17 (2016)

    MATH  Google Scholar 

  16. Z. Yong, Comments on DNA coding and chaos-based image encryption algorithm. J. Comput. Theor. Nanosci. 13(7), 4025–4035 (2016)

    Google Scholar 

  17. H. Wang, H.F. Liang, Z.H. Miao, A new color image encryption scheme based on chaos synchronization of time-delay Lorenz system. Adv. Manuf. 4(004), 348–354 (2016)

    Google Scholar 

  18. H. Wu, H. Zhu, G. Ye, Public key image encryption algorithm based on pixel information and random number insertion. Phys. Scr. 96(10), 105202 (2020). https://doi.org/10.1088/1402-4896/ac0bcf

    Article  ADS  Google Scholar 

  19. F. Yang, J. Mou, C. Ma, Y. Cao, Dynamic analysis of an improper fractional-order laser chaotic system and its image encryption application. Opt. Lasers Eng. 129, 106031 (2020)

    Google Scholar 

  20. X. Li, J. Mou, L. Xiong, Z. Wang, J. Xu, Fractional-order double-ring erbium-doped fiber laser chaotic system and its application on image encryption. Opt. Laser Technol. 140, 107074 (2021). https://doi.org/10.1016/j.optlastec.2021.107074

    Article  Google Scholar 

  21. S. Vaidyanathan, Analysis, adaptive control and synchronization of a novel 3-D highly chaotic system. J. Eng. Sci. Technol. Rev. 636, 189–210 (2016)

    MATH  Google Scholar 

  22. T. Liu, H. Yan, S. Banerjee, J. Mou, A fractional-order chaotic system with hidden attractor and self-excited attractor and its DSP implementation. Chaos Solit. Fract. 145(2), 110791 (2021)

    MathSciNet  Google Scholar 

  23. G. Chen, X. Dong, On feedback control of chaotic continuous-time systems. Circ. Syst. I Fundam. Theory Appl. IEEE Trans. 40(9), 591–601 (1993)

    MathSciNet  MATH  Google Scholar 

  24. G. Wen, D. Xu, Nonlinear observer control for full-state projective synchronization in chaotic continuous-time systems. Chaos Solit. Fract. 26(1), 71–77 (2005)

    ADS  MATH  Google Scholar 

  25. A.L. Fradkov, A.Y. Pogromsky, Speed gradient control of chaotic continuous-time systems. IEEE Trans. Circ. Syst. I Fundam. Theory Appl. 43(11), 907–913 (2002)

    MathSciNet  Google Scholar 

  26. A. Chengdu, S. Jia, Nonlinear adaptive predictive targeting control of the continuous chaotic systems. Acta Phys. Sin. 50(11), 898–907 (2001)

    Google Scholar 

  27. Z. Ping, C. Yuan-Ming, K. Fei, A specific state variable for a class of 3D continuous fractional-order chaotic systems. Chin. Phys. B 19(7), 70507–070507 (2010)

    Google Scholar 

  28. R. Gorenflo, F. Mainardi, Fractional calculus: integral and differential equations of fractional order. Mathematics 49(2), 277–290 (2008)

    MATH  Google Scholar 

  29. R.L. Bagley, J. Torvik, Fractional calculus—a different approach to the analysis of viscoelastically damped structures. AIAA J. 21(5), 741–748 (2012)

    ADS  MATH  Google Scholar 

  30. R.L. Magin, O. Abdullah, D. Baleanu, X.J. Zhou, Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation. J. Magn. Reson. 190(2), 255–270 (2008)

    ADS  Google Scholar 

  31. J.G. Lu, Synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal. Chaos Solit. Fract. 27(2), 519–525 (2006)

    ADS  MATH  Google Scholar 

  32. M.M. Asheghan, M. Beheshti, M.S. Tavazoei, Robust synchronization of perturbed Chen’s fractional-order chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 16(2), 1044–1051 (2011)

    ADS  MATH  Google Scholar 

  33. D. Chen, R. Zhang, J.C. Sprott, H. Chen, X. Ma, Synchronization between integer-order chaotic systems and a class of fractional-order chaotic systems via sliding mode control. Chaos 22(2), 821 (2012)

    MathSciNet  MATH  Google Scholar 

  34. C. Ma, J. Mou, P. Li, T. Liu, Dynamic analysis of a new two-dimensional map in three forms: integer-order, fractional-order and improper fractional-order. Eur. Phys. J. Spec. Top. 2021, 1–13 (2021)

    Google Scholar 

  35. I. Petras, Fractional-order memristor-based chua’s circuit. IEEE Trans. Circ. Syst. II Express Briefs 57(12), 975–979 (2010)

    Google Scholar 

  36. F. Yang, P. Li, Characteristics analysis of the fractional-order chaotic memristive circuit based on chua’s circuit. Mobile Netw. Appl. 5, 1–9 (2019)

    Google Scholar 

  37. N.A. Khan, T. Hameed, M.A. Qureshi, S. Akbar, A.K. Alzahrani, Emulate the chaotic flows of fractional jerk system to scramble the sound and image memo with circuit execution. Phys. Scr. 95(6), 065217 (2020)

    ADS  Google Scholar 

  38. J. Echenausía-Monroy, H. Velazquez, R. Jaimes-Reategui, V. Aboites, G. Huerta-Cuellar, A physical interpretation of fractional-order-derivatives in a jerk system: electronic approach. Commun. Nonlinear Sci. Numer. Simul. 90, 105413 (2020)

    MathSciNet  MATH  Google Scholar 

  39. J.P. Singh, V.T. Pham, T. Hayat, S. Jafari, F.E. Alsaadi, B.K. Roy, A new four-dimensional hyperjerk system with stable equilibrium point, circuit implementation, and its synchronization by using an adaptive integrator backstepping control. Chin. Phys. B 027(010), 231–239 (2018)

    Google Scholar 

  40. S. He, K. Sun, X. Wu, Fractional symbolic network entropy analysis for the fractional-order chaotic systems. Phys. Scr. 95(3), 035220 (2020)

    Google Scholar 

  41. S. Gu, S. He, H. Wang, B. Du, Analysis of three types of initial offset-boosting behavior for a new fractional-order dynamical system. Chaos Solit. Fract. 143, 110613 (2021)

    Google Scholar 

  42. J. Machado, Discrete-time fractional-order controllers. FCAA J. Fract. Calc. Appl. Anal. 4(1), 47–66 (2001)

    MathSciNet  MATH  Google Scholar 

  43. A.D. Zieliński, D. Sierociuk, Stability of discrete fractional order state-space systems. J. Vibr. Control 14(9–10), 505–510 (2010)

    MathSciNet  Google Scholar 

  44. L.F. Wu, S.F. Liu, W. Cui, D.L. Liu, T.X. Yao, Non-homogenous discrete grey model with fractional-order accumulation. Neural Comput. Appl. 25(5), 1215–1221 (2014)

    Google Scholar 

  45. E. Tarasov, E. Vasily, Discrete map with memory from fractional differential equation of arbitrary positive order. J. Math. Phys. 50(12), 263 (2009)

    MathSciNet  MATH  Google Scholar 

  46. L.F. Wu, S.F. Liu, L.G. Yao, Discrete grey model based on fractional order accumulate. Syst. Eng. Theory Pract. 34(7), 1822–1827 (2014)

    Google Scholar 

  47. Z. Hu, W. Chen, Modeling of macroeconomics by a novel discrete nonlinear fractional dynamical system. Discrete Dyn. Nature Soc. 2013, 1–9 (2013)

    MathSciNet  Google Scholar 

  48. T. Liu, S. Banerjee, H. Yan, J. Mou, Dynamical analysis of the improper fractional-order 2D-SCLMM and its DSP implementation. Eur. Phys. J. Plus 136(5), 1–17 (2021)

    Google Scholar 

  49. J. Zhou, W. Zhou, T. Chu, Y.X. Chang, M.J. Huang, Bifurcation, intermittent chaos and multi-stability in a two-stage Cournot game with R and D spillover and product differentiation. Appl. Math. Comput. 341, 358–378 (2019)

    MathSciNet  MATH  Google Scholar 

  50. W. Zhang, W.S. Ma, Y.F. Zhang, Y.Z. Liu, Double excitation multi-stability and multi-pulse chaotic vibrations of a bistable asymmetric laminated composite square panels under foundation force. Chaos 30(8), 083105 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  51. S. Vaidyanathan et al., Integral sliding mode controller design for the global chaos synchronization of a new finance chaotic system with three balance points and multi-stability. IOP Conf. Ser. Mater. Sci. Eng. 1115(1), 012001 (2021)

    Google Scholar 

  52. A. Khalaf, H.R. Abdolmohammadi, A. Ahmadi, L. Moysis, I. Hussain, Extreme multi-stability analysis of a novel 5D chaotic system with hidden attractors, line equilibrium, permutation entropy and its secure communication scheme. Eur. Phys. J. Spec. Top. 229(6), 1175–1188 (2020)

    Google Scholar 

  53. A.N. Pisarchik, R. Jaimes-Reátegui, C. Rodríguez-Flores, J. García-López, F. Martín-Pasquín, Secure chaotic communication based on extreme multistability. J. Franklin Inst. 358(1), 2561–2575 (2021)

    MathSciNet  MATH  Google Scholar 

  54. S. Jafari, A. Ahmadi, S. Panahi, K. Rajagopal, Extreme multi-stability: when imperfection changes quality. Chaos Solit. Fract. 108, 182–186 (2018)

    ADS  Google Scholar 

  55. X. Zhao, J. Liu, H. Liu, F. Zhang, Dynamic analysis of a one-parameter chaotic system in complex field. IEEE Access 99, 1 (2020)

    Google Scholar 

  56. C. Ma, J. Mou, L. Xiong, S. Banerjee, X. Han, Dynamical analysis of a new chaotic system: asymmetric multistability, offset boosting control and circuit realization. Nonlinear Dyn. 103(6), 1–14 (2021)

    Google Scholar 

  57. A.P. Pentland, Fractal-based description of natural scenes. IEEE Trans. Pattern Anal. Mach. Intell. 6, 661–674 (2009)

    Google Scholar 

  58. J.M. Bardet, C.A. Tudor, A wavelet analysis of the Rosenblatt process: chaos expansion and estimation of the self-similarity parameter. Stoch. Process. Appl. 120(12), 2331–2362 (2008)

    MathSciNet  MATH  Google Scholar 

  59. S. Halagowda, S.K. Lakshminarayana, Image encryption method based on hybrid fractal-chaos algorithm. Int. J. Intell. Eng. Syst. 10(6), 221–229 (2017)

    Google Scholar 

  60. Y. Zhang, X. Li, Z. Huang, H. Mao, Feature analysis of metal fatigue damage processes based on the chaos and fractal theory. J. Vibr. Shock 36(21), 72–76 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. 62061014); The Natural Science Foundation of Liaoning province (2020-MS-274); The Basic Scientific Research Projects of Colleges and Universities of Liaoning Province (Grant no. J202148).

Author information

Authors and Affiliations

Authors

Contributions

Xintong Han carried out and designed the experiments, analyzed the data and wrote the manuscript. Yinghong Cao and Jun Mou made the theoretical guidance for this paper. Tianming Liu carried out the experiment. All the authors reviewed the manuscript.

Corresponding authors

Correspondence to Jun Mou or Yinghong Cao.

Ethics declarations

Conflict of interest

The authors declare that we have no conflicts of interests about the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, X., Mou, J., Liu, T. et al. A new fractional-order 2D discrete chaotic map and its DSP implement. Eur. Phys. J. Spec. Top. 230, 3913–3925 (2021). https://doi.org/10.1140/epjs/s11734-021-00331-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00331-6

Navigation