Skip to main content
Log in

Physics with NOvA: a half-time review

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

The NOvA experiment has been collecting data in the NuMI neutrino beam since 2014. In this article we describe the rich physics program of the experiment, including long-baseline oscillation measurements, neutrino cross-section measurements, searches for phenomena beyond the standard three flavor oscillation paradigm, as well as astrophysical searches. Only half way through its expected run plan, NOvA will continue to explore exciting physics topics through 2026 and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Fukuda, T. Hayakawa, E. Ichihara, K. Inoue, K. Ishihara, H. Ishino, Y. Itow, T. Kajita, J. Kameda, S. Kasuga et al. (Super-Kamiokande Collaboration), Phys. Rev. Lett. 81, 1562 (1998)

  2. S. Fukuda, Y. Fukuda, M. Ishitsuka, Y. Itow, T. Kajita, J. Kameda, K. Kaneyuki, K. Kobayashi, Y. Koshio, M. Miura et al., Phys. Lett. B 539, 179 (2002)

    Article  ADS  Google Scholar 

  3. Q.R. Ahmad, R.C. Allen, T.C. Andersen, J.D. Anglin, J.C. Barton, E.W. Beier, M. Bercovitch, J. Bigu, S.D. Biller, R.A. Black et al. (SNO Collaboration), Phys. Rev. Lett. 89, 011301 (2002)

  4. K. Eguchi, S. Enomoto, K. Furuno, J. Goldman, H. Hanada, H. Ikeda, K. Ikeda, K. Inoue, K. Ishihara, W. Itoh et al. (KamLAND Collaboration), Phys. Rev. Lett. 90, 021802 (2003)

  5. D.G. Michael, P. Adamson, T. Alexopoulos, W.W.M. Allison, G.J. Alner, K. Anderson, C. Andreopoulos, M. Andrews, R. Andrews, K.E. Arms et al. (MINOS Collaboration), Phys. Rev. Lett. 97, 191801 (2006)

  6. K. Abe, N. Abgrall, Y. Ajima, H. Aihara, J.B. Albert, C. Andreopoulos, B. Andrieu, S. Aoki, O. Araoka, J. Argyriades et al. (T2K Collaboration), Phys. Rev. Lett. 107, 041801 (2011)

  7. Y. Abe, C. Aberle, T. Akiri, J.C. dos Anjos, F. Ardellier, A.F. Barbosa, A. Baxter, M. Bergevin, A. Bernstein, T.J.C. Bezerra et al. (Double Chooz Collaboration), Phys. Rev. Lett. 108, 131801 (2012)

  8. F.P. An, J.Z. Bai, A.B. Balantekin, H.R. Band, D. Beavis, W. Beriguete, M. Bishai, S. Blyth, K. Boddy, R.L. Brown et al., Phys. Rev. Lett. 108, 171803 (2012)

    Article  ADS  Google Scholar 

  9. J.K. Ahn, S. Chebotaryov, J.H. Choi, S. Choi, W. Choi, Y. Choi, H.I. Jang, J.S. Jang, E.J. Jeon, I.S. Jeong et al. (RENO Collaboration), Phys. Rev. Lett. 108, 191802 (2012)

  10. B. Pontecorvo, JTEP 7, 172 (1957)

    Google Scholar 

  11. V. Gribov, B. Pontecorvo, Phys. Lett. B 28, 493 (1969)

    Article  ADS  Google Scholar 

  12. Z. Maki, M. Nakagawa, S. Sakata, Prog. Theor. Phys. 28, 870 (1962). https://academic.oup.com/ptp/article-pdf/28/5/870/5258750/28-5-870.pdf

  13. H. Nunokawa, S.J. Parke, J.W.F. Valle, Prog. Part. Nucl. Phys. 60, 338 (2008). arXiv:0710.0554

  14. P.A. Zyla et al. (Particle Data Group), PTEP 2020, 083C01 (2020)

  15. E.K. Akhmedov, V.A. Rubakov, A.Y. Smirnov, Phys. Rev. Lett. 81, 1359 (1998)

    Article  ADS  Google Scholar 

  16. W. Buchmüller, R. Peccei, T. Yanagida, Annu. Rev. Nucl. Part. Sci. 55, 311 (2005). https://doi.org/10.1146/annurev.nucl.55.090704.151558

    Article  ADS  Google Scholar 

  17. L. Wolfenstein, Phys. Rev. D 17, 2369 (1978)

    Article  ADS  Google Scholar 

  18. S.P. Mikheyev, A.Y. Smirnov, Sov. J. Nucl. Phys. 42, 913 (1985)

    Google Scholar 

  19. D.G. Michael et al. (MINOS), Phys. Rev. Lett. 97, 191801 (2006). arXiv:hep-ex/607088

  20. P. Adamson et al., Nucl. Instrum. Methods A 806, 279 (2016). arXiv:1507.06690

    Article  ADS  Google Scholar 

  21. D.S. Ayres et al. NOvA, The NOvA Technical Design Report, Report No. FERMILAB–DESIGN–2007–01 (2007). https://doi.org/10.2172/935497

  22. R. Ainsworth, P. Adamson, B.C. Brown, D. Capista, K. Hazelwood, I. Kourbanis, D.K. Morris, M. Xiao, M.J. Yang, Phys. Rev. Accel. Beams 23, 121002 (2020)

    Article  ADS  Google Scholar 

  23. J.J. Grudzinski, R.L. Talaga, A. Pla-Dalmau, J.E. Fagan, C. Grozis, K. Kephart, R. Fischer (NOvA), J. Vinyl Additive Tech. 22, 368 (2016)

  24. S. Mufson et al., Nucl. Instrum. Methods A 799, 1 (2015). arXiv:1504.04035

    Article  ADS  Google Scholar 

  25. A. Norman, E. Niner, A. Habig, J. Phys. Conf. Ser. 664, 082040 (2015)

    Article  Google Scholar 

  26. A. Norman et al., J. Phys. Conf. Ser. 664, 082041 (2015)

    Article  Google Scholar 

  27. P.A. Rodrigues et al. (MINERvA Collaboration), Phys. Rev. Lett. 116, 071802 (2016)

  28. R. Gran, J. Nieves, F. Sanchez, M.J.V. Vacas, Phys. Rev. D 88, 113007 (2013)

    Article  ADS  Google Scholar 

  29. Z. Pavlovic. Ph.D. thesis, University of Texas (2008)

  30. L. Aliaga et al. (MINER\(\nu \)A Collaboration), Phys. Rev. D 94, 092005 (2016)

  31. C. Andreopoulos et al., Nucl. Instrum. Methods A 614, 87 (2010). arXiv:0905.2517

    Article  ADS  Google Scholar 

  32. A. Aurisano, A. Radovic, D. Rocco, A. Himmel, M.D. Messier, E. Niner, G. Pawloski, F. Psihas, A. Sousa, P. Vahle, JINST 11, P09001 (2016). arXiv:1604.01444

    Article  ADS  Google Scholar 

  33. F. Psihas, Ph.D. thesis, Indiana U. (2018)

  34. S. Yu, Ph.D. thesis, IIT, Chicago (2020)

  35. L. Aliaga Soplin, Ph.D. thesis, William-Mary Coll. (2016)

  36. P. Adamson et al. (NOvA), Phys. Rev. Lett. 116, 151806 (2016). arXiv:1601.05022

  37. P. Adamson et al. (NOvA), Phys. Rev. D 93, 051104 (2016). arXiv:1601.05037

  38. P. Adamson et al. (NOvA), Phys. Rev. Lett. 118, 151802 (2017). arXiv:1701.05891

  39. P. Adamson et al. (NOvA), Phys. Rev. Lett. 118, 231801 (2017). arXiv:1703.03328

  40. M.A. Acero et al. (NOvA), Phys. Rev. D 98, 032012 (2018). arXiv:1806.00096

  41. M.A. Acero et al. (NOvA), Phys. Rev. Lett. 123, 151803 (2019). arXiv:1906.04907

  42. M.A. Acero et al. (NOvA) (2021). arXiv:2108.08219

  43. T. Katori, Meson exchange current (MEC) models in neutrino interaction generators (2013). arXiv:1304.6014

  44. M.A. Acero et al. (NOvA, R. Group), Eur. Phys. J. C 80, 1119 (2020). arXiv:2006.08727

  45. J. Nieves, J.E. Amaro, M. Valverde, Phys. Rev. C 70, 055503 (2004)

    Article  ADS  Google Scholar 

  46. J. Nieves, J.E. Amaro, M. Valverde, Phys. Rev. C 72, 019902 (2005)

    Article  ADS  Google Scholar 

  47. C. Berger, L.M. Sehgal, Phys. Rev. D 76, 113004 (2007). arXiv:0709.4378

    Article  ADS  Google Scholar 

  48. A. Bodek, U.K. Yang, Modeling neutrino and electron scattering inelastic cross-sections in the few GeV region with effective LO PDFs TV leading order. In: 2nd International Workshop on Neutrino-Nucleus Interactions in the Few GeV Region. (2003). arXiv:hep-ex/0308007

  49. A.S. Meyer, M. Betancourt, R. Gran, R.J. Hill, Phys. Rev. D 93, 113015 (2016)

    Article  ADS  Google Scholar 

  50. G.J. Feldman, R.D. Cousins, Phys. Rev. D 57, 3873 (1998). arXiv:physics/9711021

    Article  ADS  Google Scholar 

  51. K. Abe et al. (T2K), Phys. Rev. D 103, 112008 (2021). arXiv:2101.03779

  52. J.A. Formaggio, G.P. Zeller, Rev. Mod. Phys. 84, 1307 (2012). arXiv:1305.7513

    Article  ADS  Google Scholar 

  53. L. Cremonesi, Cross-section measurements with nova. (2020). https://doi.org/10.5281/zenodo.4155399

  54. M.A. Judah, Ph.D. thesis, Colorado State U., Fort Collins (2019)

  55. M.A. Acero et al. (NOvA), Phys. Rev. D 102, 012004 (2020). arXiv:1902.00558

  56. D. Rein, L.M. Sehgal, Nucl. Phys. B 223, 29 (1983)

    Article  ADS  Google Scholar 

  57. C. Berger, L.M. Sehgal, Phys. Rev. D 79, 053003 (2009). arXiv:0812.2653

    Article  ADS  Google Scholar 

  58. G.S. Davies (NOvA), PoS NuFact2017, 006 (2018)

  59. M.A. Acero et al. (NOvA) (2021). arXiv:2106.04673

  60. M.A. Acero et al. (NOvA), Phys. Rev. D 99, 122004 (2019). arXiv:1904.12975

  61. M.A. Acero et al. (NOvA) (2021). arXiv:2105.03848

  62. P. Adamson, I. Anghel, A. Aurisano, G. Barr, M. Bishai, A. Blake, G.J. Bock, D. Bogert, S.V. Cao, C.M. Castromonte et al. (MINOS Collaboration), Phys. Rev. D 91, 112006 (2015)

  63. M.A. Acero et al. (NOvA), Phys. Rev. D 103, 012007 (2021). arXiv:2009.04867

  64. A. Mirizzi, I. Tamborra, H. Janka, N. Saviano, K. Scholberg, R. Bollig, L. Hudepohl, S. Chakraborty, Riv. Nuevo. Cim. 39, 1 (2016)

    ADS  Google Scholar 

  65. P. Antonioli, R.T. Fienberg, F. Fleurot, Y. Fukuda, W. Fulgione, A. Habig, J. Heise, A.B. McDonald, C. Mills, T. Namba et al., New J. Phys. 6, 114 (2004)

    Article  ADS  Google Scholar 

  66. M.A. Acero et al. (NOvA), JCAP 10, 014 (2020). arXiv:2005.07155

  67. M.A. Acero et al. (NOvA), Phys. Rev. D 101, 112006 (2020). arXiv:2001.07240

  68. M.A. Acero et al. (NOvA) (2021). arXiv:2106.06035

  69. P. Shanahan, P. Vahle, Snowmass 2021 Letters of Interest NF, 135 (2021)

  70. M. Ball et al. The PIP-II Conceptual Design Report, ed. by V. Lebedev. Report No. FERMILAB–DESIGN–2017–01, FERMILAB–TM–2649–AD–APC (2017). https://doi.org/10.2172/1346823

  71. M. Wallbank (NOvA), PoS ICHEP2020, 188 (2021)

  72. A. Habig, O. Samoylov, M. Strait, Snowmass 2021 Letters of Interest NF, 217 (2021)

  73. B.P. Abbott et al., Living Rev. Rel. 21, 3 (2018)

    Article  Google Scholar 

  74. W.H. Press, D.N. Spergel, Astrophys. J. 296, 679 (1985)

    Article  ADS  Google Scholar 

  75. T.K. Gaisser, G. Steigman, S. Tilav, Phys. Rev. D 34, 2206 (1986)

    Article  ADS  Google Scholar 

  76. A. Aurisano, G. Davies, B. Rebel, Snowmass 2021 Letters of Interest NF, 157 (2021)

  77. P. Adamson, F.P. An, I. Anghel, A. Aurisano, A.B. Balantekin, H.R. Band, G. Barr, M. Bishai, A. Blake, S. Blyth et al. (Daya Bay Collaboration and \(\rm MINOS+\) Collaboration), Phys. Rev. Lett. 125, 071801 (2020)

  78. L. Cremonesi, M. Muether, J. Paley, Snowmass 2021 Letters of Interest NF, 264 (2021)

  79. M. Baird, R. Nichol, L. Suter, J. Wolcott, Snowmass 2021 Letters of Interest NF, 133 (2021)

  80. R. Patterson, M. Sanchez, S. Bolognesi, M. Hartz, K. Mahn, Snowmass 2021 Letters of Interest NF, 124 (2021)

Download references

Acknowledgements

This document was prepared by the NOvA collaboration using the resources of the Fermi National Accelerator Laboratory (Fermilab), a U.S. Department of Energy, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance, LLC (FRA), acting under Contract No. DE-AC02-07CH11359. This work was supported by the US Department of Energy; the US National Science Foundation; the Department of Science and Technology, India; the European Research Council; the MSMT CR, GA UK, Czech Republic; the RAS, RFBR, RMES, RSF, and BASIS Foundation, Russia; CNPq and FAPEG, Brazil; STFC, and the Royal Society, United Kingdom; and the state and University of Minnesota. This work used resources of the National Energy Research Scientific Computing Center (NERSC), a US Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231. We are grateful for the contributions of the staffs of the University of Minnesota at the Ash River Laboratory and of Fermilab.

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Peter Shanahan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shanahan, P., Vahle, P. & for the NOvA Collaboration. Physics with NOvA: a half-time review. Eur. Phys. J. Spec. Top. 230, 4259–4273 (2021). https://doi.org/10.1140/epjs/s11734-021-00285-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00285-9

Navigation