Skip to main content
Log in

Projectile motion of surface gravity water wave packets: An analogy to quantum mechanics

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We study phase contributions of wave functions that occur in the evolution of Gaussian surface gravity water wave packets with nonzero initial momenta propagating in the presence and absence of an effective external linear potential. Our approach takes advantage of the fact that in contrast to matter waves, water waves allow us to measure both their amplitudes and phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. We emphasize that the Kennard phase has also been observed [16] in a Stern–Gerlach atom interferometer.

  2. For studies on ballistic wave packets in systems analogous to surface gravity water wave pulses we refer to Refs. [17,18,19].

References

  1. R.P. Feynman, Rev. Mod. Phys. 20, 367 (1948)

    Article  ADS  Google Scholar 

  2. R.P. Feynman, A.R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965)

    MATH  Google Scholar 

  3. L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Pergamon Press, Oxford, 1977)

    MATH  Google Scholar 

  4. G.G. Rozenman, S. Fu, A. Arie, L. Shemer, MDPI-Fluids 4(2), 96 (2019)

    Article  Google Scholar 

  5. M. Born, E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 2002)

    MATH  Google Scholar 

  6. S. Fu, Y. Tsur, J. Zhou, L. Shemer, A. Arie, Phys. Rev. Lett. 115, 034501 (2015)

    Article  ADS  Google Scholar 

  7. S. Fu, Y. Tsur, J. Zhou, L. Shemer, A. Arie, Phys. Rev. Lett. 115, 254501 (2015)

    Article  ADS  Google Scholar 

  8. S. Fu, Y. Tsur, J. Zhou, L. Shemer, A. Arie, Phys. Rev. E 93, 013127 (2016)

  9. G.G. Rozenman, L. Shemer, A. Arie, Phys. Rev. E 101, 050201(R) (2020)

    Article  ADS  Google Scholar 

  10. M.V. Berry, R.G. Chambers, M.D. Large, C. Upstill, J.C. Walmsley, Eur. J. Phys. 1, 154 (1980)

  11. U. Bar-Ziv, A. Postan, M. Segev, Phys. Rev. B 92, 100301 (2015)

    Article  ADS  Google Scholar 

  12. E.H. Kennard, Z. Phys. 44, 326 (1927)

    Article  ADS  Google Scholar 

  13. E.H. Kennard, J. Frank. Inst. 207, 47 (1929)

    Article  Google Scholar 

  14. M. Zimmermann, M.A. Efremov, A. Roura, W.P. Schleich, S.A. DeSavage, J.P. Davis, A. Srinivasan, F.A. Narducci, S.A. Werner, E.M. Rasel, Appl. Phys. B 123, 102 (2017)

  15. G.G. Rozenman, M. Zimmermann, M.A. Efremov, W.P. Schleich, L. Shemer, A. Arie, Phys. Rev. Lett. 122, 124302 (2019)

    Article  ADS  Google Scholar 

  16. O. Amit, Y. Margalit, O. Dobkowski, Z. Zhou, Y. Japha, M. Zimmermann, M.A. Efremov, F.A. Narducci, E.M. Rasel, W.P. Schleich, R. Folman, Phys. Rev. Lett. 123, 083601 (2019)

    Article  ADS  Google Scholar 

  17. K. Hayata, Y. Tsuji, M. Koshiba, J. Appl. Phys. 72, 2912 (1992)

    Article  ADS  Google Scholar 

  18. G.A. Siviloglou, J. Broky, A. Dogariu, D.N. Christodoulides, Opt. Lett. 33(3), 207 (2008)

    Article  ADS  Google Scholar 

  19. J. Wolf, Y. Pan, G.M. Turner, M.C. Beard, C.A. Schmuttenmaer, S. Holler, R.K. Chang, Phys. Rev. A 64, 023808 (2001)

    Article  ADS  Google Scholar 

  20. D.M. Greenberger, Phys. Rev. Lett. 87, 100405 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  21. D.M. Greenberger, in: Foundations of Quantum Theory. Proceedings of the International School of Physics “Enrico Fermi” Course 197, edited by E.M. Rasel, W.P. Schleich, and S. Wölk (IOS Press, Amsterdam, 2019)

  22. C.C. Mei, The Applied Dynamics of Ocean Surface Waves (Wiley-Interscience, New York, 1983)

    MATH  Google Scholar 

  23. L. Shemer, B. Dorfman, Nonlinear Process. Geophys. 15, 931 (2008)

    Article  ADS  Google Scholar 

  24. S. Feng, H.G. Winful, Opt. Lett. 26, 485 (2001)

    Article  ADS  Google Scholar 

  25. F.W. King, Hilbert Transforms, vol. 1 (Cambridge University Press, Cambridge, 2009)

    Book  Google Scholar 

  26. MATLAB ‘Hilbert Transform’ package https://www.mathworks.com/help/signal/ug/hilbert-transform.html. Accessed 28 Oct 2019

Download references

Acknowledgements

We thank Tamir Ilan and Anatoliy Khait for technical support and assistance. This work is funded by DIP, the German-Israeli Project Cooperation (AR 924/1-1, DU 1086/2-1) supported by the DFG, and the Israel Science Foundation (Grant nos. 1415/17 and 508/19). G.G.R. is grateful for the opportunity to participate in the FQMT’19 conference, during which he was inspired to study several new topics. M.Z. thanks the German Space Agency (DLR) with funds provided by the Federal Ministry for Economic Affairs and Energy (BMWi) due to an enactment of the German Bundestag under Grant nos. DLR 50WM1556, 50WM1956. M.A.E. is thankful to the Center for Integrated Quantum Science and Technology (IQ\(^{\mathrm {ST}}\)) for its generous financial support. W.P.S. is grateful to Texas A&M University for a Faculty Fellowship at the Hagler Institute for Advanced Study at the Texas A&M University as well as to the Texas A&M AgriLife Research. The research of the IQ\(^{\mathrm {ST}}\) is financially supported by the Ministry of Science, Research and Arts Baden–Württemberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgi Gary Rozenman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozenman, G.G., Zimmermann, M., Efremov, M.A. et al. Projectile motion of surface gravity water wave packets: An analogy to quantum mechanics. Eur. Phys. J. Spec. Top. 230, 931–935 (2021). https://doi.org/10.1140/epjs/s11734-021-00096-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00096-y

Navigation