Skip to main content
Log in

Critical transition influenced by dynamic quorum sensing in nonlinear oscillators

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

We investigate the critical transitions in the ensemble of nonlinear oscillators interacting with the dynamical environment based on a threshold. The threshold is encoded by the amplitude of individual oscillators present in the network. The key idea is that whenever the oscillator’s amplitude is above the threshold, that node will be coupled to the environment with particular interaction strength. This consideration mimics the mechanism of quorum sensing by which many biological and chemical systems attain collective behavior when the population density reaches the threshold. We found the emergence of first-order discontinuous transition to steady states when the threshold is less than the maximum amplitude. We also deduced the general expression to obtain critical points in the chosen models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Kuehn, A mathematical framework for critical transitions: bifurcations, fast-slow systems and stochastic dynamics. Phys. D: Nonlinear Phenom. 240(12), 1020–1035 (2011)

    Article  ADS  Google Scholar 

  2. M. Scheffer, S. Carpenter, J.A. Foley, C. Folke, B. Walker, Catastrophic shifts in ecosystems. Nature 413(6856), 591–596 (2001)

    Article  ADS  Google Scholar 

  3. C. Folke, S. Carpenter, B. Walker, M. Scheffer, T. Elmqvist, L. Gunderson, C. Holling, Regime shifts, resilience, and biodiversity in ecosystemmanagement. Annu. Rev. Ecol. Evol. Syst. 35, 557–581 (2004)

    Article  Google Scholar 

  4. T.M. Lenton, H. Hermann, K. Elmar, W.H. Jim, L. Wolfgang, R. Stefan, J.S. Hans, Tipping elements in the Earth’s climate system. Proc. Natl. Acad. Sci. 105(6), 1786–1793 (2008)

    Article  ADS  Google Scholar 

  5. H. Stommel, Thermohaline convection with two stable regimes of flow. Tellus 13(2), 224–230 (1961)

    Article  ADS  Google Scholar 

  6. G.I. Hagstrom, S.A. Levin, Marine ecosystems as complex adaptive systems: emergent patterns, critical transitions, and public goods. Ecosystems 20(3), 458–476 (2017)

    Article  Google Scholar 

  7. J.G. Venegas, W. Tilo, M. Guido, F. Marcos, M. Vidal, L. Dominick, T. Nora, J.F. Alan, J.C. Ronald, B. Giacomo, R.S. Harris, Self-organized patchiness in asthma as a prelude to catastrophic shifts. Nature 434(7034), 777–782 (2005)

    Article  ADS  Google Scholar 

  8. B. Litt, E. Rosana, E. Javier, D. Maryann, S. Rachel, H. Thomas, P. Page et al., Epileptic seizures may begin hours in advance of clinical onset: a report of five patients. Neuron 30(1), 51–64 (2001)

    Article  Google Scholar 

  9. I. Leyva, R. Sevilla-Escoboza, J.M. Buldú, I. Sendina-Nadal, J. Gómez-Gardeñes, A. Arenas, Y. Moreno, S. Gómez, R. Jaimes-Reétegui, S. Boccaletti, Explosive first-order transition to synchrony in networked chaotic oscillators. Phys. Rev. Lett. 108(16), 168702 (2012)

    Article  ADS  Google Scholar 

  10. J. Gömez-Gardenes, S. Gómez, A. Arenas, Y. Moreno, Explosive synchronization transitions in scale-free networks. Phys. Rev. Lett. 106(12), 128701 (2011)

    Article  ADS  Google Scholar 

  11. X. Zhang, S. Boccaletti, S. Guan, Z. Liu, Explosive synchronization in adaptive and multilayer networks. Phys. Rev. Lett. 114(3), 038701 (2015)

    Article  ADS  Google Scholar 

  12. U.K. Verma, S. Amit, K.K. Neeraj, K. Jürgen, D.S. Manish, ’Explosive death induced by mean-field diffusion in identical oscillators. Sci. Rep. 7(1), 1–7 (2017)

    Article  Google Scholar 

  13. H. Bi, H. Xin, X. Zhang, Y. Zou, Z. Liu, S. Guan, Explosive oscillation death in coupled Stuart-Landau oscillators. EPL (Europhys. Lett.) 108(5), 50003 (2014)

    Article  ADS  Google Scholar 

  14. N. Zhao, Z. Sun, X. Yang, X. Wei, Explosive death of conjugate coupled van der Pol oscillators on networks. Phys. Rev. E 97(6), 062203 (2018)

    Article  ADS  Google Scholar 

  15. U.K. Verma, S. Amit, K.K. Neeraj, D.S. Manish, Explosive death in complex network. Chaos Interdiscipl. J. Nonlinear Sci. 29(6), 063127 (2019)

    Article  MathSciNet  Google Scholar 

  16. R. Herrero, M. Figueras, J. Rius, F. Pi, G. Orriols, Experimental observation of the amplitude death effect in two coupled nonlinear oscillators. Phys. Rev. Lett. 84(23), 5312 (2000)

    Article  ADS  Google Scholar 

  17. M.-D. Wei, J.-C. Lun, Amplitude death in coupled chaotic solid-state lasers with cavity-configuration-dependent instabilities. Appl. Phys. Lett. 91(6), 061121 (2007)

    Article  ADS  Google Scholar 

  18. K. Bar-Eli, S. Reuveni, Stable stationary states of coupled chemical oscillators: experimental evidence. J. Phys. Chem. 89(8), 1329–1330 (1985)

    Article  Google Scholar 

  19. C. Wissel, A universal law of the characteristic return time near thresholds. Oecologia 65(1), 101–107 (1984)

    Article  ADS  Google Scholar 

  20. A. Prasad, Y.-C. Lai, A. Gavrielides, V. Kovanis, Amplitude modulation in a pair of time-delay coupled external-cavity semiconductor lasers. Phys. Lett. A 318(1–2), 71–77 (2003)

    Article  ADS  Google Scholar 

  21. D.V.R. Reddy, S. Abhijit, L.J. George, Experimental evidence of time-delay-induced death in coupled limit-cycle oscillators. Phys. Rev. Lett. 85(16), 3381 (2000)

    Article  ADS  Google Scholar 

  22. E. Ullner, A. Zaikin, E.I. Volkov, J. García-Ojalvo, Multistability and clustering in a population of synthetic genetic oscillators via phase-repulsive cell-to-cell communication. Phys. Rev. Lett. 99(14), 148103 (2007)

    Article  ADS  Google Scholar 

  23. N. Suzuki, C. Furusawa, K. Kaneko, Oscillatory protein expression dynamics endows stem cells with robust differentiation potential. PloS One 6(11), e27232 (2011)

    Article  ADS  Google Scholar 

  24. T. Danino, O. Mondragón-Palomino, L. Tsimring, J. Hasty, A synchronized quorum of genetic clocks. Nature 463(7279), 326–330 (2010)

    Article  ADS  Google Scholar 

  25. M.B. Miller, B.L. Bassler, Quorum sensing in bacteria. Annu. Rev. Microbiol. 55(1), 165–199 (2001)

    Article  Google Scholar 

  26. S. De Monte, O. Francesco, D. Sune, G.S. Preben, Dynamical quorum sensing: population density encoded in cellular dynamics. Proc. Natl. Acad. Sci. 104(47), 18377–18381 (2007)

    Article  Google Scholar 

  27. J. Hasty, D. McMillen, J.J. Collins, Engineered gene circuits. Nature 420(6912), 224–230 (2002)

    Article  ADS  Google Scholar 

  28. T. Gregor, K. Fujimoto, N. Masaki, S. Sawai, The onset of collective behavior in social amoebae. Science 328(5981), 1021–1025 (2010)

    Article  ADS  Google Scholar 

  29. R. Toth, A.F. Taylor, M.R. Tinsley, Collective behavior of a population of chemically coupled oscillators. J. Phys. Chem. B 110(20), 10170–10176 (2006)

    Article  Google Scholar 

  30. J. Javaloyes, M. Perrin, A. Politi, Collective atomic recoil laser as a synchronization transition. Phys. Rev. E 78(1), 011108 (2008)

    Article  ADS  Google Scholar 

  31. U.K. Verma, S.C. Sudhanshu, S. Sudeshna, Explosive death in nonlinear oscillators coupled by quorum sensing. Phys. Rev. E 100(3), 032203 (2019)

    Article  ADS  Google Scholar 

  32. S. Dixit, D.S. Manish, Static and dynamic attractive-repulsive interactions in two coupled nonlinear oscillators. Chaos Interdiscipl. J. Nonlinear Sci 30(3), 033114 (2020)

    Article  MathSciNet  Google Scholar 

  33. M. Schröder, M. Mannattil, D. Dutta, S. Chakraborty, M. Timme, Transient uncoupling induces synchronization. Phys. Rev. Lett. 115(5), 054101 (2015)

    Article  ADS  Google Scholar 

  34. J. Garcia-Ojalvo, M.B. Elowitz, S.H. Strogatz, Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing. Proc. Natl. Acad. Sci. 101(30), 10955–10960 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  35. L. Rayleigh, XXXIII on maintained vibrations. Lond. Edinb. Dublin Philos. Mag. J. Sci. 15(94), 229–235 (1883)

    Article  MathSciNet  Google Scholar 

  36. B. Ermentrout, Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. Soc. Industr. Appl. Math. 2002, 5 (2002)

    MATH  Google Scholar 

  37. P. Davis, Circulant Matrices (Wiley, New York, 1979).

    MATH  Google Scholar 

  38. D. Shiva, S.N. Chowdhury, A. Prasad, D. Ghosh, M.D. Shrimali, Emergent rhythms in coupled nonlinear oscillators due to dynamic interactions. arXiv:2101.04005, https://doi.org/10.1063/5.0039879 (2019)

Download references

Acknowledgements

The authors acknowledge the funding support from Department of Science and Technology, Government of India vide project Grant no. DST-SERB (EMR/2016/005561).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manish Dev Shrimali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asir, M.P., Dixit, S. & Shrimali, M.D. Critical transition influenced by dynamic quorum sensing in nonlinear oscillators. Eur. Phys. J. Spec. Top. 230, 3211–3219 (2021). https://doi.org/10.1140/epjs/s11734-021-00012-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00012-4

Navigation