Skip to main content
Log in

Supernova neutrino detection through neutron emission by nuclei

  • Regular Article
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Neutrinos from core collapse supernovae can excite nuclei of some detector materials beyond their neutron emission thresholds. Detection of these neutrons can give valuable information about the supernova explosion mechanism and possibly also throw light on neutrino properties. In this article, we give a brief review of the basic physics of neutrino-induced neutron emission and describe the results of some recent calculations of supernova neutrino-induced neutrons for some specific target detector materials due to charged current (CC) interactions of the electron flavored neutrinos and antineutrinos as well as due to neutral current (NC) interactions of neutrinos and antineutrinos of all flavors with the detector nuclei. We highlight the fact that a detector material such as lead with a relatively large neutron excess produces neutrons dominantly through the CC interaction of the \(\nu _e\)s, whereas a material such as iron with small neutron excess produces neutrons dominantly through the combined NC interaction of all the six neutrino and antineutrino species. This raises the interesting possibility of probing the fraction of mu- and tau-flavored neutrinos (which interact only through NC interaction) in the supernova neutrino flux by means of simultaneous detection of a supernova in a lead and an iron detector, for example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(From Ref. [22])

Fig. 2

(From [22])

Fig. 3

(From [22])

Fig. 4
Fig. 5

(From [22])

Fig. 6

(From [23])

Similar content being viewed by others

Notes

  1. The proposed 50 kton magnetized Iron Calorimeter (ICAL) detector to be located at the proposed India-based Neutrino Observatory (INO) is designed primarily for the study of neutrino properties, in particular, the neutrino mass hierarchy, using atmospheric neutrinos, and was originally not designed to be sensitive to much lower energy SN neutrinos. However, it can in principle be modified with suitably placed layers of neutron detectors to make the detector sensitive to SN neutrino induced neutrons.

References

  1. H.A. Bethe, Rev. Mod. Phys. 62, 801 (1990)

    Article  ADS  Google Scholar 

  2. H-Th Janka, K. Langanke, A. Marek, G. Martinez-Pinedo, B. Mueller, Phys. Rep. 442, 38 (2007)

    Article  ADS  Google Scholar 

  3. K. Scholberg, Ann. Rev. Nucl. Part. Sci. 62, 81 (2012)

    Article  ADS  Google Scholar 

  4. G.G. Raffelt, Ann. Rev. Nucl. Part. Sci. 49, 163 (1999)

    Article  ADS  Google Scholar 

  5. H. Duan, J.P. Kneller, J. Phys. G 36, 113201 (2009)

    Article  ADS  Google Scholar 

  6. K. Hirata et al., (KAMIOKANDE-II Collaboration), Phys. Rev. Lett. 58, 1490 (1987)

  7. R.M. Bionta, G. Blewitt, C.B. Bratton, D. Casper, A. Ciocio, R. Claus, B. Cortez, M. Crouch et al., Phys. Rev. Lett. 58, 1494 (1987)

    Article  ADS  Google Scholar 

  8. K. Abe et al. (Super-Kamiokande), Phys. Rev. D 83, 052010 (2011)

  9. R. Abbasi et al., (IceCUBE), Astron. Astrophys. 535, A109 (2011)

  10. L. Cadonati, F.P. Calaprice, M.C. Chen, Astropart. Phys. 16, 361 (2002)

    Article  ADS  Google Scholar 

  11. V.D. Berger, D. Marftia, B.P. Wood, Phys. Lett. B 498, 53 (2001)

    Article  ADS  Google Scholar 

  12. K. Asakura et al. (KamLAND), Astrophys. J. 818, 91 (2016)

  13. N.Y. Agafonova et al. (LVD), Astrophys. J. 802, 47 (2015)

  14. S.B. Kim, Nucl. Part. Phys. Proc. 265–266, 93 (2015)

    Article  Google Scholar 

  15. M.G. Aartsen et al., (ICECUBE) (2014) arXiv:1412.5106

  16. K. Abe et al. (2011) arXiv:1109.3262

  17. F. An et al. (JUNO), J. Phys. G 43, 030401 (2016)

  18. R. Acciari et al. (DUNE) (2015) arXiv:1512.06148

  19. J. Engel, G.C. McLaughlin, C. Volpe, Phys. Rev. D 67, 013005 (2003)

    Article  ADS  Google Scholar 

  20. C.A. Duba et al., J. Phys. Conf. Ser. 136, 042077 (2008)

    Article  Google Scholar 

  21. E. Kolbe, K. Langanke, Phys. Rev. C 63, 025802 (2001)

    Article  ADS  Google Scholar 

  22. A. Bandyopadhyay, P. Bhattacharjee, S. Chakraborty, K. Kar, S. Saha, Phys. Rev. D 95, 065002 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  23. P. Bhattacharjee, A. Bandyopadhyay, S. Chakraborty, S. Ghosh, K. Kar, S. Saha (2020). arXiv:2012.13986v2

  24. T. Fischer, S.C. Whitehouse, A. Mezzacappa, F.-K. Thielemann, M. Liebendorfer, Astron. Astrophys. 517, A80 (2010)

    Article  Google Scholar 

  25. T. Totani, K. Sato, H.E. Dalhed, J.R. Wilson, Astrophys. J. 496, 216 (1998)

    Article  ADS  Google Scholar 

  26. M.T. Keil, G.G. Raffelt, H.-T. Janka, Astrophys. J. 590, 971 (2003)

    Article  ADS  Google Scholar 

  27. G. Martinez-Pinedo, T. Fischer, A. Lohs, L. Huther, Phys. Rev. Lett. 109, 251104 (2012)

    Article  ADS  Google Scholar 

  28. T. Fischer, Astron. Astrophys. 593, A103 (2016)

    Article  ADS  Google Scholar 

  29. See, e.g., R.N. Mohapatra and P.B. Pal, Massive Neutrinos in Physics and Astrophysics, 3rd Ed. (World Scientific, Singapore, 2004)

  30. A.S. Dighe, AYu. Smirnov, Phys. Rev. D 62, 033007 (2000)

    Article  ADS  Google Scholar 

  31. H. Duan, G.M. Fuller, Y.-Z. Qian, Ann. Rev. Nucl. Part. Sci. 60, 569 (2010)

    Article  ADS  Google Scholar 

  32. A. Mirrizi, I. Tamborra, H.-T. Janka, N. Saviano, K. Scholberg, R. Bolig, L. Hudepohl, S. Chakraborty, Riv. Nuovo Cim. 39, 1 (2016)

    ADS  Google Scholar 

  33. N. Saviano, S. Chakraborty, T. Fisher, A. Mirizzi, Phys. Rev. D 85, 113002 (2012)

    Article  ADS  Google Scholar 

  34. S. Chakraborty, T. Fischer, A. Mirizzi, N. Saviano, R. Tomas, Phys. Rev. Lett. 107, 151101 (2011)

    Article  ADS  Google Scholar 

  35. S. Chakraborty, T. Fischer, A. Mirizzi, N. Saviano, R. Tomas, Phys. Rev D 84, 025002 (2011)

    Article  ADS  Google Scholar 

  36. T. Kuramoto, M. Fukugita, Y. Kohyama, K. Kubodera, Nucl. Phys. A 512, 711 (1990)

    Article  ADS  Google Scholar 

  37. G.M. Fuller, W.C. Haxton, G.C. McLaughlin, Phys. Rev. D 59, 085005 (1999)

    Article  ADS  Google Scholar 

  38. E. Kolbe, K. Langanke, G. Martinez-Pinedo, Phys. Rev. C 60, 052801 (1999)

    Article  ADS  Google Scholar 

  39. J. Engel, Phys. Rev. C 57, 2004 (1998)

    Article  ADS  Google Scholar 

  40. E. Caurier, K. Langanke, G. Martinez-Pinedo, F. Nowacki, Nucl. Phys. A 653, 439 (1999)

    Article  ADS  Google Scholar 

  41. K. Langanke, D.J. Dean, P.B. Radha, Y. Alhasid, S.E. Koonin, Phys. Rev. C 52, 718 (1995)

    Article  ADS  Google Scholar 

  42. T.T.S. Kuo, G.E. Brown, Nucl. Phys. A 114, 241 (1968)

    Article  ADS  Google Scholar 

  43. A. Poves, A.P. Zuker, Phys. Rep. 70, 235 (1981)

    Article  ADS  Google Scholar 

  44. P. Sarriguren, E. Moya de Guerra, A. Escuderos, A.C. Carrizo, Nucl. Phys. A 635, 55 (1998)

    Article  ADS  Google Scholar 

  45. O. Moreno, R. Alvarez-Rodriguez, R. Sarriguren, E. Moya de Guerra, J.M. Udias, J.R. Vignote, Phys. Rev. C 74, 054308 (2006)

    Article  ADS  Google Scholar 

  46. O.B. Tarasov, D. Bazin, Nucl. Instrum. Meth. B 204, 174 (2003). http://lise.nscl.msu.edu/pace4.html

  47. A. Gavron, Phys. Rev. C 21, 230 (1980)

    Article  ADS  Google Scholar 

  48. See, for a review, T.M. Undagoitia and L. Rauch, J. Phys. G: Nucl. Part. Phys. 43, 013001 (2016). arXiv:1509.08767

  49. S. Chakraborty, P. Bhattacharjee, K. Kar, Phys. Rev. D 89, 013001 (2014)

    Article  ADS  Google Scholar 

  50. R.F. Lang, C. McCabe, S. Reichard, M. Selvi, I. Tamborra, Phys. Rev. D 94, 103009 (2016)

    Article  ADS  Google Scholar 

  51. D.Z. Freedman, Phys. Rev. D 9, 1389 (1974)

    Article  ADS  Google Scholar 

  52. D.Z. Freedman, D.N. Schramm, D.L. Tubbs, Ann. Rev. Nucl. Part. Sci. 27, 167 (1977)

    Article  ADS  Google Scholar 

  53. C.J. Horowitz, K.J. Coakley, D.N. McKinsey, Phys. Rev. D 68, 023005 (2003)

    Article  ADS  Google Scholar 

  54. S. Ünlü, H.A. Aygör, N. Çakmak, C. Selam, Turk. J. Phys. 40, 304 (2016)

    Article  Google Scholar 

  55. R. Lazauskas, C. Volpe, Nucl. Phys. A 792, 219 (2007)

    Article  ADS  Google Scholar 

  56. N. Paar, D. Vretenar, P. Ring, J. Phys. G 35, 014058 (2008)

    Article  ADS  Google Scholar 

  57. The ICAL Collaboration: A. Kumar et al., Pramana J. Phys 88, 79 (2017)

  58. S. Ahmed et al, arXiv:1505.07380v2

Download references

Author information

Authors and Affiliations

Authors

Contributions

Both the authors have contributed equally to the preparation of the first draft and subsequent modifications leading to the final version of the manuscript.

Corresponding author

Correspondence to Pijushpani Bhattacharjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharjee, P., Kar, K. Supernova neutrino detection through neutron emission by nuclei. Eur. Phys. J. Spec. Top. 230, 505–515 (2021). https://doi.org/10.1140/epjs/s11734-021-00002-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00002-6

Navigation