Skip to main content
Log in

Muon/pion identification at BESIII based on variational quantum classifier

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In collider physics experiments, particle identification (PID), i.e., the identification of the charged particle species in the detector is usually one of the most crucial tools in data analysis. In the past decade, machine learning techniques have gradually become one of the mainstream methods in PID, usually providing superior discrimination power compared to classical algorithms. In recent years, quantum machine learning (QML) has bridged the traditional machine learning and the quantum computing techniques, providing further improvement potential for traditional machine learning models. In this work, targeting at the \(\mu ^{\pm } /\pi ^{\pm }\) discrimination problem at the BESIII experiment, we developed a variational quantum classifier (VQC) with nine qubits. Using the IBM quantum simulator, we studied various encoding circuits and variational ansatzes to explore their performance. Classical optimizers are able to minimize the loss function in quantum-classical hybrid models effectively. A comparison of VQC with the traditional multiple layer perception neural network reveals they perform similarly on the same datasets. This illustrates the feasibility to apply quantum machine learning to data analysis in collider physics experiments in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data used in the paper is within the BESIII collaboration, which is not available in public repositories. However, all data used in the paper can be made available from the corresponding author on reasonable request.

References

  1. M. Ablikim, Z. An, J. Bai, N. Berger, J. Bian, X. Cai, G. Cao, X. Cao, J. Chang, C. Chen et al., Design and construction of the Besiii detector. Nucl. Instrum. Methods Phys. Res., Sect. A 614(3), 345–399 (2010). https://doi.org/10.1016/j.nima.2009.12.050

    Article  ADS  Google Scholar 

  2. A. Radovic, M. Williams, D. Rousseau, M. Kagan, D. Bonacorsi, A. Himmel, A. Aurisano, K. Terao, T. Wongjirad, Machine learning at the energy and intensity frontiers of particle physics. Nature 560(7716), 41–48 (2018). https://doi.org/10.1038/s41586-018-0361-2

    Article  ADS  Google Scholar 

  3. M. Feickert, B. Nachman, A living review of machine learning for particle physics. arXiv preprint arXiv:2102.02770 (2021) 10.48550/arXiv.2102.02770

  4. B.P. Roe, H.-J. Yang, J. Zhu, Y. Liu, I. Stancu, G. McGregor, Boosted decision trees as an alternative to artificial neural networks for particle identification. Nucl. Instrum. Methods Phys. Res. Sect. A 543(2–3), 577–584 (2005). https://doi.org/10.1016/j.nima.2004.12.018

    Article  ADS  Google Scholar 

  5. C.M. Bishop et al., Neural Networks for Pattern Recognition (Oxford University Press, New York, 1995)

    Book  Google Scholar 

  6. J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, S. Lloyd, Quantum machine learning. Nature 549(7671), 195–202 (2017). https://doi.org/10.1038/nature23474

    Article  ADS  Google Scholar 

  7. M. Schuld, F. Petruccione, Supervised Learning with Quantum Computers, vol. 17 (Springer, Berlin, 2018)

    Book  Google Scholar 

  8. W. Guan, G. Perdue, A. Pesah, M. Schuld, K. Terashi, S. Vallecorsa, J.-R. Vlimant, Quantum machine learning in high energy physics. Machine Learn. Sci. Technol. 2(1), 011003 (2021). https://doi.org/10.1088/2632-2153/abc17d

    Article  Google Scholar 

  9. S.L. Wu, S. Yoo, Challenges and opportunities in quantum machine learning for high-energy physics. Nat. Rev. Phys. 4(3), 143–144 (2022)

    Article  Google Scholar 

  10. P. Rebentrost, M. Mohseni, S. Lloyd, Quantum support vector machine for big data classification. Phys. Rev. Lett. 113(13), 130503 (2014). https://doi.org/10.1103/PhysRevLett.113.130503

    Article  ADS  Google Scholar 

  11. M. Schuld, A. Bocharov, K.M. Svore, N. Wiebe, Circuit-centric quantum classifiers. Phys. Rev. A 101(3), 032308 (2020). https://doi.org/10.1103/PhysRevA.101.032308

    Article  ADS  MathSciNet  Google Scholar 

  12. S.L. Wu, S. Sun, W. Guan, C. Zhou, J. Chan, C.L. Cheng, T. Pham, Y. Qian, A.Z. Wang, R. Zhang et al., Application of quantum machine learning using the quantum kernel algorithm on high energy physics analysis at the lhc. Phys. Rev. Res. 3(3), 033221 (2021). https://doi.org/10.1103/PhysRevResearch.3.033221

    Article  Google Scholar 

  13. V. Belis, S. González-Castillo, C. Reissel, S. Vallecorsa, E.F. Combarro, Dissertori,G., Reiter,F.: Higgs analysis with quantum classifiers. In: EPJ Web of Conferences, vol. 251, p. 03070 (2021). 10.1051/epjconf/202125103070

  14. V. Havlíček, A.D. Córcoles, K. Temme, A.W. Harrow, A. Kandala, J.M. Chow, J.M. Gambetta, Supervised learning with quantum-enhanced feature spaces. Nature 567(7747), 209–212 (2019). https://doi.org/10.1038/s41586-019-0980-2

    Article  ADS  Google Scholar 

  15. P.-T. De Boer, D.P. Kroese, S. Mannor, R.Y. Rubinstein, A tutorial on the cross-entropy method. Ann. Oper. Res. 134(1), 19–67 (2005). https://doi.org/10.1007/s10479-005-5724-z

    Article  MathSciNet  Google Scholar 

  16. W.C. Davidon, Variable metric method for minimization. SIAM J. Optim. 1(1), 1–17 (1991). https://doi.org/10.1137/0801001

    Article  MathSciNet  Google Scholar 

  17. A.G. Baydin, B.A. Pearlmutter, A.A. Radul, J.M. Siskind, Automatic differentiation in machine learning: a survey. J. Machine Learn. Res. 18, 1–43 (2018)

    MathSciNet  Google Scholar 

  18. V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, M.S. Alam, S. Ahmed, J.M. Arrazola, C. Blank, A. Delgado, S. Jahangiri, et al.: Pennylane: automatic differentiation of hybrid quantum-classical computations. arXiv preprint arXiv:1811.04968 (2018) 10.48550/arXiv.1811.04968

  19. M. Schuld, V. Bergholm, C. Gogolin, J. Izaac, N. Killoran, Evaluating analytic gradients on quantum hardware. Phys. Rev. A 99(3), 032331 (2019). https://doi.org/10.1103/PhysRevA.99.032331

    Article  ADS  Google Scholar 

  20. R.-G. Ping, Event generators at Besiii. Chin. Phys. C 32(8), 599–602 (2008). https://doi.org/10.1088/1674-1137/32/8/001

    Article  ADS  MathSciNet  Google Scholar 

  21. W.-D. Li, H.-M. Liu, Z. Deng, K. He, M. He, X. Ji, L. Jiang, H. Li, C. Liu, Q. Ma, et al.: The offline software for the besiii experiment. In: Proceeding of CHEP, vol.27 (2006)

  22. W. Blum, W. Riegler, L. Rolandi, Particle Detection with Drift Chambers (Springer, Berlin, 2008)

    Google Scholar 

  23. C. Zhu, R.H. Byrd, P. Lu, J. Nocedal, Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw. (TOMS) 23(4), 550–560 (1997). https://doi.org/10.1145/279232.279236

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC) under Contracts Nos. 12025502, 12105158, 12188102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teng Li.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Z., Huang, X., Li, T. et al. Muon/pion identification at BESIII based on variational quantum classifier. Eur. Phys. J. Plus 139, 356 (2024). https://doi.org/10.1140/epjp/s13360-024-05144-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05144-9

Navigation