Skip to main content
Log in

Analytical solutions to intensity calculation in scintillation detectors and their application to the scintillation flash coordinate reconstruction

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Detectors with continuous scintillator and matrix of photomultipliers attached are widely used in modern particle physics and various medical tomographs. There are two common ways to calculate the coordinates of the scintillation flash via photomultipliers energy outcome: Anger’s method and Monte Carlo simulations. In this article, we derive an analytical solution for the computation of the energy outcome from several photomultipliers built into the bottom face of the scintillation camera with a continuous scintillator shaped as a rectangular parallelepiped. The lateral faces of the scintillation camera are considered specular reflectors with reflective indexes \(\sim 1\) or 0. The analytical solution is used as a reference point for the scintillation flash coordinate reconstruction. The achieved results are similar to those the Monte Carlo simulation provides, but require less computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

No data are associated in the manuscript.

References

  1. S. Basu, A. Alavi, SPECT-CT and PET-CT in oncology-an overview. Curr. Med. Imaging 7, 202–209 (2011)

    Article  Google Scholar 

  2. P. Moskal et al., Time resolution of the plastic scintillator strips with matrix photomultiplier readout for J-PET tomograph. Phys. Med. Biol. 61, 2025 (2016)

    Article  Google Scholar 

  3. P. Moskal et al., Simulating NEMA characteristics of the modular total-body J-PET scanner–an economic total-body PET from plastic scintillators. Phys. Med. Biol. 66, 175015 (2021)

    Article  Google Scholar 

  4. P. Beltrame et al., The AX-PET demonstrator–design, construction and characterization. Nucl. Instrum. Methods Phys. Res., Sect. A Accel. Spectrom. Detect. Assoc. Equip. 654, 546–559 (2011)

    Article  ADS  Google Scholar 

  5. S. Vandenberghe, P. Moskal, J.S. Karp, State of the art in total body PET. EJNMMI Phys. 7, 1–33 (2020)

    Article  Google Scholar 

  6. X. Zhang, J. Zhou, S.R. Cherry, R.D. Badawi, J. Qi, Quantitative image reconstruction for total-body PET imaging using the 2-meter long EXPLORER scanner. Phys. Med. Biol. 62, 2465 (2017)

    Article  Google Scholar 

  7. S.R. Cherry et al., Total-body PET: maximizing sensitivity to create new opportunities for clinical research and patient care. J. Nucl. Med. 59, 3–12 (2018)

    Article  Google Scholar 

  8. M.T. Madsen, Recent advances in SPECT imaging. J. Nucl. Med. 48, 661–673 (2007)

    Article  Google Scholar 

  9. M.M. Khalil, J.L. Tremoleda, T.B. Bayomy, W. Gsell, Molecular SPECT imaging: an overview. Int. J. Mol. Imaging 2011, 796025 (2011)

    Article  Google Scholar 

  10. D.L. Bailey, K.P. Willowson, An evidence-based review of quantitative SPECT imaging and potential clinical applications. J. Nucl. Med. 54, 83–89 (2013)

    Article  Google Scholar 

  11. A.J. González, et al. Continuous or pixelated scintillators?, not longer a discussion, in 2014 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), 1–4 (2014)

  12. H.O. Anger, Sensitivity, resolution, and linearity of the scintillation camera. IEEE Trans. Nucl. Sci. 13, 380–392 (1966)

    Article  ADS  Google Scholar 

  13. T.D. Milster et al., A modular scintillation camera for use in nuclear medicine. IEEE Trans. Nucl. Sci. 31, 578–580 (1984)

    Article  ADS  Google Scholar 

  14. C. Fiorini et al., The \({\rm HICAM}\) gamma camera. IEEE Trans. Nucl. Sci. 59, 537–544 (2012)

    Article  ADS  Google Scholar 

  15. T. Peterson, L. Furenlid, SPECT detectors: the Anger camera and beyond. Phys. Med. Biol. 56, R145-82 (2011)

    Article  ADS  Google Scholar 

  16. M. Kim et al., Design of a scintillator-based prompt gamma camera for boron-neutron capture therapy: comparison of SrI2 and GAGG using Monte-Carlo simulation. Nucl. Eng. Technol. 53, 626–636 (2021)

    Article  Google Scholar 

  17. A. Morozov et al., Iterative reconstruction of detector response of an Anger gamma camera. Phys. Med. Biol. 60, 4169 (2015)

    Article  Google Scholar 

  18. M. Korevaar, M. Goorden, J. Heemskerk, F. Beekman, Maximum-likelihood scintillation detection for EM-CCD based gamma cameras. Phys. Med. Biol. 56, 4785–801 (2011)

    Article  Google Scholar 

  19. F. Acerbi, S. Gundacker, Understanding and simulating SiPMs. Nucl. Instrum. Methods Phys. Res., Sect. A Accel. Spectrom. Detect. Assoc. Equip. 926, 16–35 (2019)

    Article  ADS  Google Scholar 

  20. F. Pedrotti, L. Pedrotti, Introduction to Optics ISBN: 9780135015452 (Prentice Hall, 1993)

  21. M.M. Weiner, Specular reflections in scintillation frustums. IEEE Trans. Nucl. Sci. 14, 686–690 (1967)

    Article  ADS  Google Scholar 

  22. P.M. Evans, M.A. Mosleh-Shirazi, E.J. Harris, J. Seco, Monte Carlo and Lambertian light guide models of the light output from scintillation crystals at megavoltage energies. Med. Phys. 33, 1797–1809 (2006)

    Article  Google Scholar 

  23. V. Grabski, New fiber read-out design for the large area scintillator detectors: providing good amplitude and time resolutions. arXiv:1909.01184 (Sept. 2019)

  24. M. Born, E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light (Elsevier, 2013)

    Google Scholar 

  25. L.D. Landau, E.M. Lifshitz, The classical theory of fields (Course of theoretical physics, Volume 2), (Pergamon Press, 1971)

  26. J.H. Poynting, On the transfer of energy in the electromagnetic field. Philos. Trans. R. Soc. Lond. 175, 343–361 (1884)

    ADS  Google Scholar 

  27. N.S. Kozlova, O.A. Buzanov, V.M. Kasimova, A.P. Kozlova, E.V. Zabelina, Optical characteristics of single crystal Gd 3 Al 2 Ga 3 O 12: Ce. Modern Electron. Mater. 4, 7 (2018)

    Article  Google Scholar 

  28. D.R. Schaart et al., A novel, SiPM-array-based, monolithic scintillator detector for PET. Phys. Med. Biol. 54, 3501 (2009)

    Article  Google Scholar 

  29. T.G. Mayerhöfer, S. Pahlow, J. Popp, The bouguer-beer-Lambert law: shining light on the obscure. ChemPhysChem 21, 2029–2046 (2020)

    Article  Google Scholar 

  30. N. Uchida et al., Attenuation characteristics of a Ce: Gd3Al2Ga3O12 scintillator. Nucl. Instrum. Methods Phys. Res., Sect. A Accel. Spectrom. Detect. Assoc. Equip. 986, 164725 (2021)

    Article  Google Scholar 

  31. K.-D. Graf, B.R. Hodgson, Popularizing geometrical concepts: the case of the kaleidoscope. Learn. Math. 10, 42–50 (1990)

    Google Scholar 

  32. S. Agostinelli et al., GEANT4–a simulation toolkit. Nucl. Instrum. Methods Phys. Res., Sect. A Accel. Spectrom. Detect. Assoc. Equip. 506, 250–303 (2003)

    Article  ADS  Google Scholar 

  33. A. Levin, C. Moisan, A more physical approach to model the surface treatment of scintillation counters and its implementation into DETECT. in 1996 IEEE Nuclear Science Symposium. Conference Record2, 702–706 (1996)

  34. Y. Zhu et al., Scintillation properties of GAGG: Ce ceramic and single crystal. Opt. Mater. 105, 109964 (2020)

    Article  Google Scholar 

  35. W.A. Kalender, X-ray computed tomography. Phys. Med. Biol. 51, R29 (2006)

    Article  ADS  Google Scholar 

  36. G. Wang, H. Yu, B. De Man, An outlook on x-ray CT research and development. Med. Phys. 35, 1051–1064 (2008)

    Article  Google Scholar 

  37. A. Bonneville et al., A novel muon detector for borehole density tomography. Nucl. Instrum. Methods Phys. Res., Sect. A Accel. Spectrom. Detect. Assoc. Equip. 851, 108–117 (2017)

    Article  ADS  Google Scholar 

  38. A. Bonneville et al., Borehole muography of subsurface reservoirs. Phil. Trans. R. Soc. A 377, 20180060 (2019)

    Article  ADS  Google Scholar 

  39. S. Procureur, Muon imaging: principles, technologies and applications. Nucl. Instrum. Methods Phys. Res., Sect. A Accel. Spectrom. Detect. Assoc. Equip. 878, 169–179 (2018)

    Article  ADS  Google Scholar 

  40. M. D’Errico et al., Borehole cylindrical detector: a compact muon telescope for muon radiography applications. Nucl. Instrum. Methods Phys. Res., Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1045, 167619 (2023)

    Article  Google Scholar 

  41. J. Gluyas et al., Passive, continuous monitoring of carbon dioxide geostorage using muon tomography. Phil. Trans. R. Soc. A 377, 20180059 (2019)

    Article  ADS  Google Scholar 

  42. K. Lang, Towards high sensitivity and high-resolution PET scanners: imaging-guided proton therapy and total body imaging. Bio-Algorithms Med-Syst. 18, 96–106 (2022)

    Article  Google Scholar 

  43. F. Roellinghoff et al., Real-time proton beam range monitoring by means of prompt-gamma detection with a collimated camera. Phys. Med. Biol. 59, 1327 (2014)

    Article  Google Scholar 

  44. D. Litzenberg et al., On-line monitoring of radiotherapy beams: experimental results with proton beams. Med. Phys. 26, 992–1006 (1999)

    Article  Google Scholar 

  45. G. Pausch et al., Detection systems for range monitoring in proton therapy: needs and challenges. Nucl. Instrum. Methods Phys. Res., Sect. A Accel. Spectrom. Detect. Assoc. Equip. 954, 161227 (2020)

    Article  Google Scholar 

  46. E.H. Lehmann, P. Vontobel, E. Deschler-Erb, M. Soares, Non-invasive studies of objects from cultural heritage. Nucl. Instrum. Methods Phys. Res., Sect. A Accel. Spectrom. Detect. Assoc. Equip. 542, 68–75 (2005)

    Article  ADS  Google Scholar 

  47. D. Mannes, F. Schmid, J. Frey, K. Schmidt-Ott, E. Lehmann, Combined neutron and X-ray imaging for non-invasive investigations of cultural heritage objects. Phys. Procedia 69, 653–660 (2015)

    Article  ADS  Google Scholar 

  48. K. Janssens et al., Non-invasive and non-destructive examination of artistic pigments, paints, and paintings by means of X-ray methods. Anal. Chem. Cult. Herit. (2017). https://doi.org/10.1007/978-3-319-52804-5_3

    Article  Google Scholar 

  49. D. Thickett et al., Using non-invasive non-destructive techniques to monitor cultural heritage objects. Insight-Non-Destr. Test. Cond. Monit. 59, 230–234 (2017)

    Google Scholar 

  50. M. Kokubun et al., Improvements of the Astro-E2 hard X-ray detector (HXD-II). IEEE Trans. Nucl. Sci. 51, 1991–1996 (2004)

    Article  ADS  Google Scholar 

  51. E. Aprile, T. Doke, Liquid xenon detectors for particle physics and astrophysics. Rev. Mod. Phys. 82, 2053 (2010)

    Article  ADS  Google Scholar 

  52. R. Longland, C. Iliadis, A. Champagne, C. Fox, J.R. Newton, Nuclear astrophysics studies at the LENA facility: the \(\gamma\)-ray detection system. Nucl. Instrum. Methods Phys. Res., Sect. A Accel. Spectrom. Detect. Assoc. Equip. 566, 452–464 (2006)

    Article  ADS  Google Scholar 

  53. T. Itoh et al., A 1-dimensional \(\gamma\)-ray position sensor based on GSO: Ce scintillators coupled to a Si strip detector. Nucl. Instrum. Methods Phys. Res., Sect. A Accel. Spectrom. Detect. Assoc. Equip. 579, 239–242 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vovchenko Ivan.

Appendix: Integrals

Appendix: Integrals

In this appendix, we derive Eqs. (5) and (18). To derive Eq. (5), the integral over y should be computed first in Eq. (4). To do that, the indefinite integral should be considered:

$$\begin{aligned} \int \frac{\textrm{d}v}{(v^2+k)^{3/2}}&=\int \frac{\textrm{d}v}{k} \left( \frac{1}{\sqrt{v^2+k}}-\frac{v^2}{(v^2+k)^{3/2}}\right) ,\nonumber \\ \int \frac{v^2}{(v^2+k)^{3/2}}&=-\frac{v}{\sqrt{v^2+k}}+\int \frac{\textrm{d}v}{\sqrt{v^2+k}},\nonumber \\ \int \frac{\textrm{d}v}{(v^2+k)^{3/2}}&=\frac{v}{k\sqrt{v^2+k}}+C. \end{aligned}$$

Thus,

$$\begin{gathered} \int\limits_{{y^{{(L)}} }}^{{y^{{(L)}} + b}} {\frac{{{\text{d}}y}}{{((x - x_{0} )^{2} + (y - y_{0} )^{2} + z_{0}^{2} ))^{{3/2}} }}} \hfill \\ = \frac{{y^{{(L)}} - y_{0} + b}}{{((x - x_{0} )^{2} + z_{0}^{2} )\sqrt {(x - x_{0} )^{2} + (y^{{(L)}} - y_{0} + b)^{2} + z_{0}^{2} } }} \hfill \\ - \frac{{y^{{(L)}} - y_{0} }}{{((x - x_{0} )^{2} + z_{0}^{2} )\sqrt {(x - x_{0} )^{2} + (y^{{(L)}} - y_{0} )^{2} + z_{0}^{2} } }}. \hfill \\ \end{gathered}$$
(28)

Now the integral over x can be computed. The corresponding indefinite integral is

$$\begin{aligned}\int \frac{\textrm{d}u}{(u^2+c)\sqrt{u^2+p}}= &\begin{bmatrix} u=\sqrt{p}\tan {q}\\ \textrm{d}u=\sqrt{p}\frac{\textrm{d}q}{\cos ^2 q} \end{bmatrix}\nonumber \\ = & \int \frac{\textrm{d}q}{(p\tan ^2 q+c)\cos {q}}= \int \frac{\textrm{d}q\cot }{(p+c \cot ^2 q)\sin {q}}\nonumber \\ = & \begin{bmatrix} t=\frac{1}{\sin q}\\ \textrm{d}t=-\frac{\cos q}{\sin ^2 q}\textrm{d}q=-t \cot q \textrm{d}q \end{bmatrix}=-\int \frac{\textrm{d}t}{p+c(t^2-1)}=\nonumber \\ &-\frac{1}{p-c}\int \frac{\textrm{d}t}{1+\left( \sqrt{\frac{c}{p-c}}t\right) ^2}=\nonumber \\ & - \frac{1}{\sqrt{c(p-c)}}\tan ^{-1}\left( \sqrt{\frac{c}{p-c}}t\right) +C=\nonumber \\ & -\frac{1}{\sqrt{c(p-c)}}\tan ^{-1}\left( \sqrt{\frac{c}{p-c}}\frac{1}{\sin q}\right) +C=\nonumber \\ & -\frac{1}{\sqrt{c(p-c)}}\tan ^{-1}\left( \sqrt{\frac{c}{p-c}}\sqrt{\frac{u^2+p}{u^2}}\right) +C\nonumber \\ = & \frac{1}{\sqrt{c(p-c)}}\tan ^{-1}\left( \sqrt{\frac{p-c}{c}}\sqrt{\frac{u^2}{u^2+p}}\right) +{\tilde{C}}. \end{aligned}$$
(29)

Here, \(u=x-x_0\), \(p=(y^{(L)}-y_0)^2+z_0^2\), and \(c=z_0^2\). The last equality follows from \(\tan ^{-1}x+\tan ^{-1}\frac{1}{x}=\frac{\pi }{2}\). Thus,

$$\begin{aligned}{} \int \limits _{x^{(L)}-x_0}^{x^{(L)}-x_0+a}\frac{\textrm{d}u}{(u^2+c)\sqrt{u^2+p}}= \frac{\tan ^{-1}\left( \frac{u\sqrt{p-c}}{\sqrt{c}\sqrt{p+u^2}}\right) }{\sqrt{c}\sqrt{p-c}}\Bigg |_{x^{(L)}-x_0}^{x^{(L)}-x_0+a}. \end{aligned}$$
(30)

Finally, the integral from Eq. (4) equals

$$\begin{gathered} I_{A} = \Bigg|\frac{{{\text{sign}}(y^{{(L)}} - y_{0} + b)}}{{4\pi }}I \hfill \\ \quad \times \Bigg[\tan ^{{ - 1}} \left( {\frac{{(x^{{(L)}} - x_{0} + a)|y^{{(L)}} - y_{0} + b|}}{{z_{0} \sqrt {(x^{{(L)}} - x_{0} + a)^{2} + (y^{{(L)}} - y_{0} + b)^{2} + z_{0}^{2} } }}} \right) \hfill \\ - \tan ^{{ - 1}} \left( {\frac{{(x^{{(L)}} - x_{0} )|y^{{(L)}} - y_{0} + b|}}{{z_{0} \sqrt {(x^{{(L)}} - x_{0} )^{2} + (y^{{(L)}} - y_{0} + b)^{2} + z_{0}^{2} } }}} \right)\Bigg] \hfill \\ \quad - \frac{{{\text{sign}}(y^{{(L)}} - y_{0} )}}{{4\pi }}I \hfill \\ \quad \times \Bigg[\tan ^{{ - 1}} \left( {\frac{{(x^{{(L)}} - x_{0} + a)|y^{{(L)}} - y_{0} |}}{{z_{0} \sqrt {(x^{{(L)}} - x_{0} + a)^{2} + (y^{{(L)}} - y_{0} )^{2} + z_{0}^{2} } }}} \right) \hfill \\ - \tan ^{{ - 1}} \left( {\frac{{(x^{{(L)}} - x_{0} )|y^{{(L)}} - y_{0} |}}{{z_{0} \sqrt {(x^{{(L)}} - x_{0} )^{2} + (y^{{(L)}} - y_{0} )^{2} + z_{0}^{2} } }}} \right)\Bigg]\Bigg|. \hfill \\ \end{gathered}$$
(31)

Equation (18) can be derived in the same manner. First, the integral over y should be computed in Eq. (17)

$$\begin{gathered} \iint_{B} {\frac{{{\text{d}}x{\text{d}}y}}{{((x - x_{0} )^{2} + (y - y_{0} )^{2} + z_{0}^{2} )^{{3/2}} }}} \hfill \\ \quad = \int_{{x_{1} }}^{{x_{2} }} {\int_{{y_{0} + L}}^{{y_{0} + \sqrt {R_{{cr}}^{2} - (x - x_{0} )^{2} } }} {\frac{{{\text{d}}x{\text{d}}y}}{{((x - x_{0} )^{2} + (y - y_{0} )^{2} + z_{0}^{2} )^{{3/2}} }}} } \hfill \\ \quad = \left[ {\begin{array}{*{20}c} {\tilde{x} = x - x_{0} } \\ {\tilde{y} = y - y_{0} } \\ \end{array} } \right] = \int_{{x_{1} - x_{0} }}^{{x_{2} - x_{0} }} {\int_{L}^{{\sqrt {R_{{cr}}^{2} - \tilde{x}^{2} } }} {\frac{{{\text{d}}\tilde{x}{\text{d}}\tilde{y}}}{{(\tilde{x}^{2} + \tilde{y}^{2} + z_{0}^{2} )^{{3/2}} }}} } \hfill \\ \quad = \int_{{x_{1} - x_{0} }}^{{x_{2} - x_{0} }} {\text{d}} \tilde{x}\frac{{\sqrt {R_{{cr}}^{2} - \tilde{x}^{2} } }}{{(\tilde{x}^{2} + z_{0}^{2} )\sqrt {R_{{cr}}^{2} + z_{0}^{2} } }} - \int_{{x_{1} - x_{0} }}^{{x_{2} - x_{0} }} {\text{d}} \tilde{x}\frac{L}{{(\tilde{x}^{2} + z_{0}^{2} )\sqrt {\tilde{x}^{2} + L^{2} + z_{0}^{2} } }}. \hfill \\ \end{gathered}$$
(32)

The second integral is already computed above

$$\begin{gathered} L\int\limits_{{x_{1} - x_{0} }}^{{x_{2} - x_{0} }} {\frac{{{\text{d}}u}}{{(u^{2} + c)\sqrt {u^{2} + p} }}} = L\frac{{\tan ^{{ - 1}} \left( {\frac{{u\sqrt {p - c} }}{{\sqrt c \sqrt {p + u^{2} } }}} \right)}}{{\sqrt c \sqrt {p - c} }}\Bigg|_{{x_{1} - x_{0} }}^{{x_{2} - x_{0} }} = \frac{{\tan ^{{ - 1}} \left( {\frac{{uL}}{{z_{0} \sqrt {L^{2} + z_{0}^{2} + u^{2} } }}} \right)}}{{z_{0} }}\Bigg|_{{x_{1} - x_{0} }}^{{x_{2} - x_{0} }} . \end{gathered}$$
(33)

The first integral can be computed as follows:

$$\begin{gathered} \int\limits_{{x_{1} - x_{0} }}^{{x_{2} - x_{0} }} {\text{d}} u\frac{{\sqrt {R_{{cr}}^{2} - u^{2} } }}{{(u^{2} + z_{0}^{2} )\sqrt {R_{{cr}}^{2} + z_{0}^{2} } }} \hfill \\ \quad = \frac{1}{{\sqrt {R_{{cr}}^{2} + z_{0}^{2} } }}\left.\left(\frac{{\sqrt {R_{{cr}}^{2} + z_{0}^{2} } }}{{z_{0} }}{\textrm{tan}}^{{{{ - 1}}}} \left( {\frac{{u\sqrt {R_{{cr}}^{2} + z_{0}^{2} } }}{{z_{0} \sqrt {R_{{cr}}^{2} - u^{2} } }}} \right) - {\textrm{tan}}^{{{{ - 1}}}} \left( {\frac{u}{{\sqrt {R_{{cr}}^{2} - u^{2} } }}} \right)\right)\right|_{{x_{1} - x_{0} }}^{{x_{2} - x_{0} }} . \hfill \\ \end{gathered}$$
(34)

Substituting Eqs. (34) and (33) in Eq. (32), we get Eq. (18) for the function \(F(u,R_{cr},z_0,L)\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timur, K., Ivan, V. Analytical solutions to intensity calculation in scintillation detectors and their application to the scintillation flash coordinate reconstruction. Eur. Phys. J. Plus 139, 368 (2024). https://doi.org/10.1140/epjp/s13360-024-05133-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05133-y

Navigation