Skip to main content
Log in

Enhanced coherent optical effects in Ξ-shaped hybrid quantum-plasmonic systems

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this study, we investigate the coherent optical phenomena exhibited by a hybrid quantum-plasmonic system in Ξ configuration composed of four energy levels, featuring two closely spaced uppermost energy levels interacting with a weak probe field and a strong control field. The lower leg of Ξ system engages with the free-space vacuum, while the upper leg responds to interactions with surface plasmons. We reveal a significant transformation in the absorption and dispersion characteristics of this quantum system. This evolution is influenced by the interplay between quantum interference resulting from the presence of plasmonic nanostructures and the effects of incoherent pumping. In the absence of an incoherent pump field, we observe the emergence of multiple distinct absorption profiles, each containing optical transparency windows nestled amidst absorption spectral peaks. Introduction of an incoherent pump field leads to two well-defined symmetrical gain dips, each separated by a frequency corresponding to the dressed eigenstates of the system. This unique gain behavior persists whether or not population inversion occurs. We also show that these effects can be complemented with the existence of fast or slow light, expanding the range of optical phenomena that can be harnessed within this quantum system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

No data was used for the research in this article. The authors declare that the data supporting the findings of this study are available within the article.

References

  1. D.E. Chang, A.S. Sørensen, P.R. Hemmer, M.D. Lukin, Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006). https://doi.org/10.1103/PhysRevLett.97.053002

    Article  ADS  Google Scholar 

  2. V. Yannopapas, N.V. Vitanov, Spontaneous emission of a two-level atom placed within clusters of metallic nanoparticles. J. Phys.:Condens. Matter 19, 096210 (2007)

    ADS  Google Scholar 

  3. A. Trügler, U. Hohenester, Strong coupling between a metallic nanoparticle and a single molecule. Phys. Rev. B 77, 115403 (2008). https://doi.org/10.1103/PhysRevB.77.115403

    Article  ADS  Google Scholar 

  4. C. Sanchez-Munoz, A. Gonzalez-Tudela, C. Tejedor, Plasmon-polariton emission from a coherently \(p\)-excited quantum dot near a metal interface. Phys. Rev. B 85, 125301 (2012). https://doi.org/10.1103/PhysRevB.85.125301

    Article  ADS  Google Scholar 

  5. R. Marty, A. Arbouet, V. Paillard, C. Girard, G. Colas des. Francs, Photon antibunching in the optical near field. Phys. Rev. B 82, 081403 (2010). https://doi.org/10.1103/PhysRevB.82.081403

    Article  ADS  Google Scholar 

  6. Y. Gu, L. Huang, O.J.F. Martin, Q. Gong, Resonance fluorescence of single molecules assisted by a plasmonic structure. Phys. Rev. B 81, 193103 (2010). https://doi.org/10.1103/PhysRevB.81.193103

    Article  ADS  Google Scholar 

  7. Y.V. Vladimirova, V.V. Klimov, V.M. Pastukhov, V.N. Zadkov, Modification of two-level-atom resonance fluorescence near a plasmonic nanostructure. Phys. Rev. A 85, 053408 (2012). https://doi.org/10.1103/PhysRevA.85.053408

    Article  ADS  Google Scholar 

  8. A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, S. Savasta, Quantum plasmonics with quantum dot-metal nanoparticle molecules: influence of the fano effect on photon statistics. Phys. Rev. Lett. 105, 263601 (2010). https://doi.org/10.1103/PhysRevLett.105.263601

    Article  ADS  Google Scholar 

  9. V. Yannopapas, E. Paspalakis, N.V. Vitanov, Plasmon-induced enhancement of quantum interference near metallic nanostructures. Phys. Rev. Lett. 103, 063602 (2009). https://doi.org/10.1103/PhysRevLett.103.063602

    Article  ADS  Google Scholar 

  10. S. Evangelou, V. Yannopapas, E. Paspalakis, Modifying free-space spontaneous emission near a plasmonic nanostructure. Phys. Rev. A 83, 023819 (2011). https://doi.org/10.1103/PhysRevA.83.023819

    Article  ADS  Google Scholar 

  11. S. Evangelou, V. Yannopapas, E. Paspalakis, Simulating quantum interference in spontaneous decay near plasmonic nanostructures: population dynamics. Phys. Rev. A 83, 055805 (2011). https://doi.org/10.1103/PhysRevA.83.055805

    Article  ADS  Google Scholar 

  12. Y. Gu, L. Wang, P. Ren, J. Zhang, T. Zhang, O.J.F. Martin, Q. Gong, Surface-plasmon-induced modification on the spontaneous emission spectrum via subwavelength-confined anisotropic purcell factor. Nano Lett. 12, 2488 (2012)

    Article  ADS  Google Scholar 

  13. D. Dzsotjan, A.S. Sørensen, M. Fleischhauer, Quantum emitters coupled to surface plasmons of a nanowire: a Green’s function approach. Phys. Rev. B 82, 075427 (2010). https://doi.org/10.1103/PhysRevB.82.075427

    Article  ADS  Google Scholar 

  14. A. Gonzalez-Tudela, D. Martin-Cano, E. Moreno, L. Martin-Moreno, C. Tejedor, F.J. Garcia-Vidal, Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. Phys. Rev. Lett. 106, 020501 (2011). https://doi.org/10.1103/PhysRevLett.106.020501

    Article  ADS  Google Scholar 

  15. D. Martín-Cano, A. González-Tudela, L. Martín-Moreno, F.J. García-Vidal, C. Tejedor, E. Moreno, Dissipation-driven generation of two-qubit entanglement mediated by plasmonic waveguides. Phys. Rev. B 84, 235306 (2011). https://doi.org/10.1103/PhysRevB.84.235306

    Article  ADS  Google Scholar 

  16. M.G.G. Abad, M. Mahmoudi, Atom-photon entanglement near a plasmonic nanostructure. Eur. Phys. J. Plus 135, 352 (2020)

    Article  Google Scholar 

  17. B. Sangshekan, M. Sahrai, S.H. Asadpour, J.P. Bonab, title Controllable atom-photon entanglement via quantum interference near plasmonic nanostructure. Sci. Rep. 12, 677 (2022)

    Article  ADS  Google Scholar 

  18. J. Lindberg, K. Lindfors, T. Setala, M. Kaivola, Dipole–dipole interaction between molecules mediated by a chain of silver nanoparticles. J, Opt. Soc. Am. A 24, 3427 (2007)

    Article  ADS  Google Scholar 

  19. H.Y. Xie, H.Y. Chung, P.T. Leung, D.P. Tsai, title Plasmonic enhancement of Förster energy transfer between two molecules in the vicinity of a metallic nanoparticle: Nonlocal optical effects. Phys. Rev. B 80, 155448 (2009). https://doi.org/10.1103/PhysRevB.80.155448

    Article  ADS  Google Scholar 

  20. M.R. Singh, N. Fang, Power transfer due to kerr nonlinearity in plasmonic nanohybrids. Solid State Commun. 336, 114397 (2021)

    Article  Google Scholar 

  21. N.C. Panoiu, W.E.I. Sha, D.Y. Lei, G.-C. Li, Nonlinear optics in plasmonic nanostructures. J. Opt. 20, 083001 (2018)

    Article  ADS  Google Scholar 

  22. I. Thanopulos, E. Paspalakis, V. Yannopapas, Plasmon-induced enhancement of nonlinear optical rectification in organic materials. Phys. Rev. B 85, 035111 (2012). https://doi.org/10.1103/PhysRevB.85.035111

    Article  ADS  Google Scholar 

  23. S.H. Asadpour, H.R. Soleimani, Phase dependence of optical bistability and multistability in a four-level quantum system near a plasmonic nanostructure. J. Appl. Phys. 119, 023102 (2016)

    Article  ADS  Google Scholar 

  24. G. Solookinejad, M. Jabbari, M. Nafar, E. Ahmadi, S.H. Asadpour, title Incoherent control of optical bistability and multistability in a hybrid system: metallic nanoparticle-quantum dot nanostructure. J. Appl. Phys. 124, 063102 (2018)

    Article  ADS  Google Scholar 

  25. Y. Pu, R. Grange, C.-L. Hsieh, D. Psaltis, Nonlinear optical properties of core-shell nanocavities for enhanced second-harmonic generation. Phys. Rev. Lett. 104, 207402 (2010). https://doi.org/10.1103/PhysRevLett.104.207402

    Article  ADS  Google Scholar 

  26. R. Esteban, M. Laroche, J.-J. Greffet, Influence of metallic nanoparticles on upconversion processes. J. Appl. Phys. 105, 033107 (2009)

    Article  ADS  Google Scholar 

  27. H. Chen, J. Ren, Y. Gu, D. Zhao, J. Zhang, Q. Gong, Nanoscale kerr nonlinearity enhancement using spontaneously generated coherence in plasmonic nanocavity. Sci. Rep. 5, 18315 (2016)

    Article  ADS  Google Scholar 

  28. H.R. Hamedi, V. Yannopapas, A. Mekys, E. Paspalakis, Control of kerr nonlinearity in a four-level quantum system near a plasmonic nanostructure. Physica E: Low-Dimensional Systems And Nanostructures 130, 114662 (2021)

    Article  Google Scholar 

  29. J.-Y. Yan, W. Zhang, S. Duan, X.-G. Zhao, Plasmon-enhanced midinfrared generation from difference frequency in semiconductor quantum dots. J. Appl. Phys. 103, 104314 (2008)

    Article  ADS  Google Scholar 

  30. J.-B. Li, N.-C. Kim, M.-T. Cheng, L. Zhou, Z.-H. Hao, Q.-Q. Wang, Optical bistability and nonlinearity of coherently coupled exciton-plasmon systems. Opt. Express 20, 1856 (2012)

    Article  ADS  Google Scholar 

  31. H.R. Hamedi, J. Ruseckas, V. Yannopapas, D. Karaoulanis, E. Paspalakis, Light-induced enhanced torque on double-v-type quantum emitters via quantum interference in spontaneous emission. Opt. Laser Technol. 165, 109550 (2023)

    Article  Google Scholar 

  32. H.R. Hamedi, V. Novičenko, G. Juzeliūnas, V. Yannopapas, E. Paspalakis, Subwavelength confinement of a quantum emitter in ladder configuration adjacent to a nanostructured plasmonic metasurface. Physica E: Low-Dimensional Systems and Nanostructures 151, 115711 (2023)

    Article  Google Scholar 

  33. S.M. Sadeghi, Gain without inversion in hybrid quantum dot-metallic nanoparticle systems. Nanotechnology 21, 455401 (2010)

    Article  ADS  Google Scholar 

  34. P.K. Jha, Y. Wang, X. Ren, X. Zhang, Quantum-coherence-enhanced transientsurface plasmon lasing. J. Opt. 19, 054002 (2017)

    Article  ADS  Google Scholar 

  35. H.R. Hamedi, V. Yannopapas, G. Juzeliūnas, E. Paspalakis, Coherent optical effects in a three-level quantum emitter near a periodic plasmonic nanostructure. Phys. Rev. B 106, 035419 (2022). https://doi.org/10.1103/PhysRevB.106.035419

    Article  ADS  Google Scholar 

  36. B.K. Dutta, P.K. Mahapatra, Vacuum induced interference effect in probe absorption in a driven y-type atom. J. Phys. B: At. Mol. Opt. Phys. 41, 055501 (2008)

    Article  ADS  Google Scholar 

  37. L. Safari, D. Iablonskyi, F. Fratini, Double-electromagnetically induced transparency in a y-type atomic system. Eur. Phys. J. D 68, 27 (2014)

    Article  ADS  Google Scholar 

  38. G.S. Agarwal, W. Harshawardhan, Inhibition and enhancement of two photon absorption. Phys. Rev. Lett. 77, 1039 (1996). https://doi.org/10.1103/PhysRevLett.77.1039

    Article  ADS  Google Scholar 

  39. G.S. Agarwal, Anisotropic vacuum-induced interference in decay channels. Phys. Rev. Lett. 84, 5500 (2000). https://doi.org/10.1103/PhysRevLett.84.5500

    Article  ADS  Google Scholar 

  40. S. Evangelou, V. Yannopapas, E. Paspalakis, Transparency and slow light in a four-level quantum system near a plasmonic nanostructure. Phys. Rev. A 86, 053811 (2012). https://doi.org/10.1103/PhysRevA.86.053811

    Article  ADS  Google Scholar 

  41. M. Kiffner, M. Macovei, J. Evers, C.H. Keitel, Title Chapter 3—vacuum-induced processes in multilevel atoms. Prog. Opt. 55, 85 (2010)

    Article  ADS  Google Scholar 

  42. S. Zhang, W. Ni, X. Kou, M.H. Yeung, L. Sun, J. Wang, C. Yan, Formation of gold and silver nanoparticle arrays and thin shells on mesostructured silica nanofibers. Adv. Funct. Mater. 17, 3258 (2007)

    Article  Google Scholar 

  43. J. Liu, H. Dong, Y. Li, P. Zhan, M. Zhu, Z. Wang, A facile route to synthesis of ordered arrays of metal nanoshells with a controllable morphology. Jpn. J. Appl. Phys. 45, L582 (2006)

    Article  ADS  Google Scholar 

  44. F. Carreño, M.A. Antón, V. Yannopapas, E. Paspalakis, Control of the absorption of a four-level quantum system near a plasmonic nanostructure. Phys. Rev. B 95, 195410 (2017). https://doi.org/10.1103/PhysRevB.95.195410

    Article  ADS  Google Scholar 

  45. V. Yannopapas, N.V. Vitanov, Electromagnetic green’s tensor and local density of states calculations for collections of spherical scatterers. Phys. Rev. B 75, 115124 (2007). https://doi.org/10.1103/PhysRevB.75.115124

    Article  ADS  Google Scholar 

  46. N. Stefanou, V. Yannopapas, A. Modinos, Multem 2: A new version of the program for transmission and band-structure calculations of photonic crystals. Comput. Phys. Commun. 132, 189 (2000)

    Article  ADS  Google Scholar 

  47. M. Fox, Quantum Optics, an Introduction (Publisher Oxford, New York, 2006)

    Book  Google Scholar 

  48. M.O. Scully, S.-Y. Zhu, A. Gavrielides, Degenerate quantum-beat laser: lasing without inversion and inversion without lasing. Phys. Rev. Lett. 62, 2813 (1989). https://doi.org/10.1103/PhysRevLett.62.2813

    Article  ADS  Google Scholar 

  49. W.-H. Xu, J.-H. Wu, J.-Y. Gao, title Gain with and without population inversion via vacuum-induced coherence in a v-type atom without external coherent driving. J. Phys. B: At. Mol. Opt. Phys. 39, 1461 (2006)

    Article  ADS  Google Scholar 

  50. J.-H. Wu, Z.-L. Yu, J.-Y. Gao, title Response of the probe gain with or without inversion to the relative phase of two coherent fields in a three-level v mode. Opt. Commun. 211, 257 (2002)

    Article  ADS  Google Scholar 

  51. Y. Zhu, Lasing without inversion in a closed three-level system. Phys. Rev. A 45, R6149 (1992). https://doi.org/10.1103/PhysRevA.45.R6149

    Article  ADS  Google Scholar 

  52. M.S. Tame, K.R. McEnery, S.K. Ozdemir, J. Lee, S.A. Maier, M.S. Kim, Quantum plasmonics. Nat. Phys. 9, 329 (2013)

    Article  Google Scholar 

  53. B.-Y. Wen, J.-Y. Wang, T.-L. Shen, Z.-W. Zhu, P.-C. Guan, J.-S. Lin, W. Peng, W.-W. Cai, H. Jin, Q.-C. Xu, Z.-L. Yang, Z.-Q. Tian, J.-F. Li, Manipulating the light-matter interactions in plasmonic nanocavities at 1nm spatial resolution. Light Sci. Appl. 11, 235 (2022)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project has received funding from the Research Council of Lithuania (LMTLT), Agreement No. S-PD-22-40.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid R. Hamedi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamedi, H.R., Ruseckas, J., Yannopapas, V. et al. Enhanced coherent optical effects in Ξ-shaped hybrid quantum-plasmonic systems. Eur. Phys. J. Plus 139, 314 (2024). https://doi.org/10.1140/epjp/s13360-024-05102-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05102-5

Navigation