Skip to main content
Log in

\(\eta \) meson in strange magnetized matter

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The in-medium properties of \(\eta \) mesons are studied in hot and dense isospin asymmetric strange magnetized matter using the chiral SU(3) hadronic mean-field model. The scalar and vector density of baryons are expressed in terms of thermal distribution functions at finite temperature and magnetic field and have a dependence on the scalar fields \(\sigma \), \(\zeta \), and \(\delta \) through the effective mass of baryons and the dependence on the vector fields \(\omega , \rho \), and \(\phi \) through the effective chemical potential. The properties of \(\eta \) mesons get modified in a hot and dense magnetized environment through the medium-modified nucleons and hyperons. The negative mass shift obtained gives rise to optical potential, which is attractive in the medium and suggests a possibility of \(\eta \)-mesic bound states formation. The addition of hyperons in the medium enhances the attractive interactions and causes an increased negative mass shift for \(\eta \) mesons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

All data generated or analysed during this study are included in this article through figures.

References

  1. L. Tolos et al., Phys. Rev. C 70, 025203 (2004)

    Article  ADS  Google Scholar 

  2. L. Tolos et al., Phys. Lett. B 635, 85 (2006)

    Article  ADS  Google Scholar 

  3. L. Tolos et al., Phys. Rev. C 77, 015207 (2008)

    Article  ADS  Google Scholar 

  4. K. Tsushima et al., Phys. Rev. C 59, 2824 (1999)

    Article  ADS  Google Scholar 

  5. K. Saito et al., Prog. Part. Nucl. Phys. 58, 1 (2007)

    Article  ADS  Google Scholar 

  6. J.J. Cobos-Martinez, K. Tsushima, Phys. Rev. C 109, 025202 (2024)

    Article  ADS  Google Scholar 

  7. K. Saito, A.W. Thomas, Phys. Lett. B 327, 9 (1994)

    Article  ADS  Google Scholar 

  8. V. Skokov, Phys. Rev. C 82, 015206 (2010)

    Article  ADS  Google Scholar 

  9. D. Blaschke et al., Phys. Rev. D 85, 034005 (2012)

    Article  ADS  Google Scholar 

  10. P. Costa, R.C. Pereira, Symmetry 11, 507 (2019)

    Article  ADS  Google Scholar 

  11. J.P. Carlomagno et al., Phys. Rev. D 106, 074002 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  12. D. Blaschke et al., Eur. Phys. J. Special Topics 229, 3517 (2020)

    Article  ADS  Google Scholar 

  13. D.B. Kaplan, A.E. Nelson, Phys. Lett. B 175, 57 (1986)

    Article  ADS  Google Scholar 

  14. X.H. Zhong et al., Phys. Rev. C 73, 015205 (2006)

    Article  ADS  Google Scholar 

  15. A.N. Tawfik, A.M. Diab, M.T. Hussein, Chin. Phys. C 43, 034103 (2019)

    Article  ADS  Google Scholar 

  16. U.S. Gupta, V.K. Tiwari, Phys. Rev. D 81, 054019 (2010)

    Article  ADS  Google Scholar 

  17. He-Xia. Zhang, Ben-Wei. Zhang, Chin. Phys. C 45, 044104 (2021)

    Article  ADS  Google Scholar 

  18. D. Suenaga, P. Lakaschus, Phys. Rev. C 101, 035209 (2020)

    Article  ADS  Google Scholar 

  19. M. Herrmann, B.L. Friman, W. Norenberg, Nucl. Phys. A 560, 411 (1993)

    Article  ADS  Google Scholar 

  20. M. Asakawa, C.M. Ko, P. Levai, X.J. Qiu, Phys. Rev. C 46, R1159 (1992)

    Article  ADS  Google Scholar 

  21. Arata Hayashigaki, Phys. Lett. B 487, 96 (2000)

    Article  ADS  Google Scholar 

  22. T. Hilger et al., Phys. Rev. C 79, 025202 (2009)

    Article  ADS  Google Scholar 

  23. C.S. Machado et al., Phys. Rev. D 89, 074027 (2014)

    Article  ADS  Google Scholar 

  24. F. Klingl et al., Phys. Rev. Lett. 82, 3396 (1999)

    Article  ADS  Google Scholar 

  25. F. Klingl et al., Nucl. Phys. A 624, 527 (1997)

    Article  ADS  Google Scholar 

  26. P. Papazoglou et al., Phys. Rev. C 59, 411 (1999)

    Article  ADS  Google Scholar 

  27. A. Mishra et al., Phys. Rev. C 69, 015202 (2004)

    Article  ADS  Google Scholar 

  28. P. Sushruth Reddy et al., Phys. Rev. C 97, 065208 (2018)

    Article  ADS  Google Scholar 

  29. A. Kumar, A. Mishra, Eur. Phys. J. A 47, 164 (2011)

    Article  ADS  Google Scholar 

  30. N. Dhale et al., Phys. Rev. C 98, 015202 (2018)

    Article  ADS  Google Scholar 

  31. D. Pathak, A. Mishra, Phys. Rev. C 91, 045206 (2015)

    Article  ADS  Google Scholar 

  32. A. Mishra, D. Pathak, Phys. Rev. C 90, 025201 (2014)

    Article  ADS  Google Scholar 

  33. A. Mishra et al., Eur. Phys. J. A 41, 205 (2009)

    Article  ADS  Google Scholar 

  34. R. Kumar, A. Kumar, Phys. Rev. C 102, 065207 (2020)

    Article  ADS  Google Scholar 

  35. R. Kumar, A. Kumar, Chin. Phys. C 46, 024109 (2022)

    Article  ADS  Google Scholar 

  36. Arvind Kumar, Rajesh Kumar, Springer Proc, Phys. 277, 329 (2022)

    Google Scholar 

  37. A. Mishra et al., Phys. Rev. C 69, 024903 (2004)

    Article  ADS  Google Scholar 

  38. R. Kumar, A. Kumar, Phys. Rev. C 102, 045206 (2020)

    Article  ADS  Google Scholar 

  39. R. Chhabra, A. Kumar, Eur. Phys. J. A 53, 105 (2017)

    Article  ADS  Google Scholar 

  40. R. Kumar, A. Kumar, Phys. Rev. C 101, 015202 (2020)

    Article  ADS  Google Scholar 

  41. R. Kumar, R. Chhabra, A. Kumar, Eur. Phys. J. A 56, 278 (2020)

    Article  ADS  Google Scholar 

  42. A. Kumar, A. Mishra, Phys. Rev. C 82, 045207 (2010)

    Article  ADS  Google Scholar 

  43. R. Kumar, A. Kumar, Eur. Phys. J. C 79, 403 (2019)

    Article  ADS  Google Scholar 

  44. P. Parui et al. (2021) arXiv:2104.05471 [hep-ph]

  45. R. Kumar, A. Kumar, Chin. Phys. C 43, 124109 (2019)

    Article  ADS  Google Scholar 

  46. A. Mishra, Phys. Rev. C 91, 035201 (2015)

    Article  ADS  Google Scholar 

  47. P. Parui, A. Mishra (2021) arXiv:2209.02455 [hep-ph] (2022)

  48. P. Muehlich, V. Shklyar, S. Leupold, U. Mosel, M. Post, Nucl. Phys. A 780, 187–205 (2006)

    Article  ADS  Google Scholar 

  49. H.C. Jean, J. Piekarewicz, A.G. Williams, Phys. Rev. C 49, 1981–1988 (1994)

    Article  ADS  Google Scholar 

  50. R. Rapp, C. Gale, Phys. Rev. C 60, 024903 (1999)

    Article  ADS  Google Scholar 

  51. S. Ghosh, S. Sarkar, S. Mallik, Eur. Phys. J. C 70, 251–262 (2010)

    Article  ADS  Google Scholar 

  52. S. Ghosh, S. Sarkar, Nucl. Phys. A 870-871, 94-111 (2011) [erratum: Nucl. Phys. A 888 (2012), 44-44]

  53. S. Ghosh, S. Sarkar, Eur. Phys. J. A 49, 97 (2013)

    Article  ADS  Google Scholar 

  54. K. Haglin, Nucl. Phys. A 584, 719 (1995)

    Article  ADS  Google Scholar 

  55. S. Cho et al., Phys. Rev. Lett. 113, 172301 (2014)

    Article  ADS  Google Scholar 

  56. P. Gubler et al., Phys. Rev. D 93, 054026 (2016)

    Article  ADS  Google Scholar 

  57. W.T. Deng, X.G. Huang, Phys. Rev. C 85, 044907 (2012)

    Article  ADS  Google Scholar 

  58. K. Tuchin, Adv. High Energy Phys. 2013, 490495 (2013)

    Article  MathSciNet  Google Scholar 

  59. V. Skokov et al., Int. J. Mod. Phys. A 24, 5925 (2009)

    Article  ADS  Google Scholar 

  60. A. Iwazaki, Phys. Rev. D 72, 114003 (2005)

    Article  ADS  Google Scholar 

  61. A. Broderick et al., Astrophys. J. 537, 351 (2000)

    Article  ADS  Google Scholar 

  62. D. Kharzeev, et al., Strongly interacting matter in magnetic fields, Springer (2013)

  63. K. Fukushima et al., Phys. Rev. D 78, 074033 (2008)

    Article  ADS  Google Scholar 

  64. C. Hartnack et al., Phys. Rept. 510, 119 (2012)

    Article  ADS  Google Scholar 

  65. A. Forster et al., Phys. Rev. C 75, 024906 (2007)

    Article  ADS  Google Scholar 

  66. C. Fuchs, Prog. Part. Nucl. Phys. 56, 1 (2006)

    Article  ADS  Google Scholar 

  67. P. Wang et al., Nucl. Phys. A 653, 166 (1999)

    Article  ADS  Google Scholar 

  68. V.A. Ambartsumyan, G.S. Saakyan, Sov. Astron. 4, 187 (1960)

    ADS  Google Scholar 

  69. N. Glendenning, Phys. Rev. C 23, 2757 (1981)

    Article  ADS  Google Scholar 

  70. D.B. Kaplan, A.E. Nelson, Nucl. Phys. A 479, 273c (1988)

    Article  ADS  Google Scholar 

  71. Q. Haider, L.C. Liu, Phys. Lett. B 172, 257 (1986)

    Article  ADS  Google Scholar 

  72. L.C. Liu, Q. Haider, Phys. Rev. C 34, 1845 (1986)

    Article  ADS  Google Scholar 

  73. T. Waas, W. Weise, Nucl. Phys. A 625, 287 (1997)

    Article  ADS  Google Scholar 

  74. H.C. Chiang et al., Phys. Rev. C 44, 738 (1991)

    Article  ADS  Google Scholar 

  75. K. Tsushima et al., Phys. Lett. B 443, 26 (1998)

    Article  ADS  Google Scholar 

  76. T. Inoue, E. Oset, Nucl. Phys. A 710, 354 (2002)

    Article  ADS  Google Scholar 

  77. Wang Teng-Teng, Chin. Phys. C 34, 460 (2010)

    Article  ADS  Google Scholar 

  78. C.Y. Song et al., Eur. Phys. Lett. 81, 4 (2008)

    Article  Google Scholar 

  79. J.C. Peng et al., Phys. Rev. Lett. 58, 2027 (1987)

    Article  ADS  Google Scholar 

  80. G. Martinez et al., Phys. Rev. Lett. 83, 1538 (1999)

    Article  ADS  Google Scholar 

  81. G. Agakishiev et al., Phys. Rev. C 88, 024904 (2013)

    Article  ADS  Google Scholar 

  82. F.D. Berg et al., Phys. Rev. Lett. 72, 977 (1994)

    Article  ADS  Google Scholar 

  83. E. Chiavassa et al., Europhys. Lett. 41, 365 (1998)

    Article  ADS  Google Scholar 

  84. R. Averbeck et al., Phys. Rev. C 67, 024903 (2003)

    Article  ADS  Google Scholar 

  85. Q. Haider, L.C. Liu, Int. J. Mod. Phys. E 24, 1530009 (2015)

    Article  ADS  Google Scholar 

  86. RHIC. Relativistic Heavy Ion Collider (2022)

  87. CBM. Compressed Baryonic Matter experiment at FAIR (2022)

  88. J-PARC. Japan Proton Accelerator Research Complex (2022)

  89. NICA. Nuclotron-based Ion Collider fAcility (2022)

  90. PANDA. antiProton ANnihilation at DArmstadt (2022)

  91. D. Zschiesche et al., Phys. Rev. C 63, 025211 (2001)

    Article  ADS  Google Scholar 

  92. P. Wang et al., Nucl. Phys. A 705, 455 (2002)

    Article  ADS  Google Scholar 

  93. Y.K. Gambir et al., Ann. Phys. 198, 132 (1990)

    Article  ADS  Google Scholar 

  94. K. Tsubakihara et al., Phys. Rev. C 81, 065206 (2010)

    Article  ADS  Google Scholar 

  95. P. Papazoglou et al., Phys. Rev. C 57, 2576 (1998)

    Article  ADS  Google Scholar 

  96. R. Chhabra, A. Kumar, Phys. Rev. C 98, 025205 (2018)

    Article  ADS  Google Scholar 

  97. R. Kumar, A. Kumar, Chin. Phys. C 43, 12 (2019)

    Article  Google Scholar 

  98. R. Kumar, A. Kumar, Eur. Phys. J. C 79, 024901 (2019)

    Google Scholar 

  99. A. Mishra et al., Eur. Phys. J. A 45, 169–177 (2020)

    Article  ADS  Google Scholar 

  100. V. Dexheimer, S. Schramm, ApJ 683, 943 (2008)

    Article  ADS  Google Scholar 

  101. M. Kumari, A. Kumar, Int. J. Mod. Phys. E 31, 2250050 (2022)

    Article  ADS  Google Scholar 

  102. E. Shuryak, Comm. Nucl. Part. Phys. 21, 235 (1994)

    Google Scholar 

  103. T.D. Cohen, Phys. Rev. D 54, 1867 (1996)

    Article  ADS  Google Scholar 

  104. S. Aoki, H. Fukaya, Y.C. Taniguchi, Phys. Rev. D 86, 114512 (2012)

    Article  ADS  Google Scholar 

  105. V. Azcoiti, Phys. Rev. D 94, 094505 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  106. M.I. Buchoff et al., Phys. Rev. D 89, 054514 (2014)

    Article  ADS  Google Scholar 

  107. V. Dick, Phys. Rev. D 91, 094504 (2015)

    Article  ADS  Google Scholar 

  108. B.B. Brandt et al., J. High Energy Phys. 12, 158 (2016)

    Article  ADS  Google Scholar 

  109. A. Bazavov et al., Phys. Rev. D 100, 094510 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  110. M. Ferreira, P. Costa, O. Lourenço, T. Frederico, C. Providência, Phys. Rev. D 89, 116011 (2014)

    Article  ADS  Google Scholar 

  111. William R. Tavares et al., Eur. Phys. J. A 57, 278 (2021)

    Article  ADS  Google Scholar 

  112. T.H. Moreira, F.L. Braghin, Phys. Rev. D 105, 114009 (2022)

    Article  ADS  Google Scholar 

  113. A. Rabhi, H. Pais, P.K. Panda, C. Providência, J. Phys. G, Nucl. Part. Phys. 36, 115204 (2009)

    Article  ADS  Google Scholar 

  114. D. Bandyopadhyay, S. Chakrabarty, S. Pal, Phys. Rev. Lett. 79, 2176 (1997)

    Article  ADS  Google Scholar 

  115. D.P. Menezes, M. Benghi Pinto, S.S. Avancini, C. Providência, Phys. Rev. C 80, 065805 (2009)

    Article  ADS  Google Scholar 

  116. L.L. Lopes, D.P. Menezes, Braz. J. Phys. 42, 428 (2012)

    Article  ADS  Google Scholar 

  117. G.S. Bali et al., JHEP 02, 044 (2012)

    Article  ADS  Google Scholar 

  118. G.S. Bali et al., Phys. Rev. D 86, 071502 (2012)

    Article  ADS  Google Scholar 

  119. Arghya Mukherjee, Snigdha Ghosh, Mahatsab Mandal, Sourav Sarkar, Pradip Roy, Phys. Rev. D 98, 056024 (2018)

    Article  ADS  Google Scholar 

  120. Sourodeep De, Pallabi Parui, Amruta Mishra, Phys. Rev. C 107, 065204 (2023)

    Article  ADS  Google Scholar 

  121. Pallabi Parui, Amruta Mishra, Phys. Rev. D 108, 114025 (2023)

    Article  ADS  Google Scholar 

  122. V. Dexheimer et al., Eur. Phys. J. A 48, 189 (2012)

    Article  ADS  Google Scholar 

  123. D. Zschiesche et al., Springer. Berlin Heidelberg 163, 129 (2000)

    Google Scholar 

  124. S. Weinberg, Phys. Rev. 166, 1568 (1968)

    Article  ADS  Google Scholar 

  125. W.A. Bardeen, B.W. Lee, Phys. Rev. 177, 2389 (1969)

    Article  ADS  Google Scholar 

  126. D. Zschiesche, Description of Hot, Dense, and Strange Hadronic Matter in a Chiral \(SU(3)_L \times SU(3)_R \sigma \)-Model, Thesis (1997)

  127. J. Peterson et al., The Astrophys. J. 921, 1 (2021)

    Article  ADS  Google Scholar 

  128. M. Strickland et al., Phys. Rev. D 86, 125032 (2012)

    Article  ADS  Google Scholar 

  129. A. Mishra, A. Mazumdar, Phys. Rev. C 79, 024908 (2009)

    Article  ADS  Google Scholar 

  130. S. Sakai, D. Jido, Phys. Rev. C 88, 064906 (2013)

    Article  ADS  Google Scholar 

  131. A. Mishra, S. Schramm, Phys. Rev. C 74, 064904 (2006)

    Article  ADS  Google Scholar 

  132. A.M. Green, S. Wycech, Phys. Rev. C 71, 014001 (2005)

    Article  ADS  Google Scholar 

  133. A. Mishra et al., Phys. Rev. C 78, 024901 (2008)

    Article  ADS  Google Scholar 

  134. P.A. Zyla et al., [Particle Data Group], PTEP 2020, 083C01 (2020)

  135. M.E. Peskin, D.V. Schroeder, An Introduction to quantum field theory, Addison-Wesley (1995)

  136. P. Senger, Particles 4, 214–226 (2021)

    Article  Google Scholar 

  137. D. Zschiesche et al., Phys. Rev. C 70, 045202 (2004)

    Article  ADS  Google Scholar 

  138. C.S. Amal Jahan, A. Mishra, Chin. Phys. C 46, 083106 (2022)

    Article  Google Scholar 

  139. A. Cieply et al., Nucl. Phys. A 925, 126–140 (2014)

    Article  ADS  Google Scholar 

  140. I. Shovkovy, Lecture Notes Phys. 871, 13–49 (2013)

    Article  ADS  Google Scholar 

  141. T. Inoue, E. Oset, Nucl. Phys. A 710, 354 (2002)

    Article  ADS  Google Scholar 

  142. C. Garcıa-Recio et al., Phys. Lett. B 550, 47 (2002)

    Article  ADS  Google Scholar 

  143. Jie Chen, Eur. Phys. J. A 53, 128 (2017)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arvind Kumar.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, S., Kumar, R., Kumari, M. et al. \(\eta \) meson in strange magnetized matter. Eur. Phys. J. Plus 139, 310 (2024). https://doi.org/10.1140/epjp/s13360-024-05098-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05098-y

Navigation