Skip to main content
Log in

Quasinormal mode of dyonic hairy black hole and its interplay with phase transitions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We explore the dynamics of the massless scalar field in the context of hairy black holes within the Einstein–Maxwell-scalar gravity system. Utilizing both the series solution and shooting methods, we numerically compute the corresponding quasinormal modes (QNMs) across various black hole parameters. Notably, the values obtained from these two methods exhibit robust agreement. The consistently negative imaginary part of the QNM underscores the stability of the massless scalar field in the backdrop of the black hole. Our investigation reveals that both the decay and oscillatory modes of the scalar field perturbation exhibit a linear increase with the horizon radius, particularly notable for large black holes. We conduct a comprehensive analysis of QNMs across diverse black hole parameters, encompassing the electric charge, magnetic charge, horizon radius, and the hairy parameter. Moreover, we extend our scrutiny to the QNM behavior near the small/large black hole phase transition. Intriguingly, we discern distinct characteristics in the nature of QNMs between the large and small black hole phases, indicating the potential of QNMs as a probing tool for black hole phase transitions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability Statement

No data associated with the manuscript.

Notes

  1. This scalar field \(\Phi \) here should not be confused with the hair scalar field \(\phi \) used in the previous sections to construct hairy dyonic black holes.

  2. Using the linearity of the wave equation, we can set \(\alpha _0=1\)

References

  1. J.W.R. Ruffini, Introducting to black hole. Phys. Rev. B 24, 30–41 (1971)

    Google Scholar 

  2. J. Bekenstein, Nonexistence of baryon number for black holes. II. Phys. Rev. D 5, 2403–2412 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  3. W. Israel, Event horizons in static vacuum space-times. Phys. Rev. 164, 1776–1779 (1967)

    Article  ADS  Google Scholar 

  4. B. Carter, Axisymmetric black hole has only two degrees of freedom. Phys. Rev. Lett. 26, 331 (1971)

    Article  ADS  Google Scholar 

  5. W. Israel, Event horizons in static electrovac space-times. Commun. Math. Phys. 8, 245–260 (1968)

    Article  ADS  MathSciNet  Google Scholar 

  6. R.M. Wald, Final states of gravitational collapse. Phys. Rev. Lett. 26, 1653–1655 (1971)

    Article  ADS  Google Scholar 

  7. D. Robinson, Uniqueness of the Kerr black hole. Phys. Rev. Lett. 34, 905–906 (1975)

    Article  ADS  Google Scholar 

  8. C. Teitelboim, Nonmeasurability of the quantum numbers of a black hole. Phys. Rev. D 5, 2941 (1972)

    Article  ADS  Google Scholar 

  9. P. Mazur, Proof of uniqueness of the Kerr-Newman black hole solution. J. Phys. A 15, 3173 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  10. J. Chase, Event horizons in static scalar-vacuum space-times. Comm. Phys. Math. 19, 276–288 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  11. N. Bocharova, K. Bronnikov, V. Melnikov, An exact solution of the system of Einstein equations and mass-free scalar field. Vestn. Mosk. Univ. Fiz. Astro 6, 706 (1970)

    Google Scholar 

  12. J. Bekenstein, Exact solutions of Einstein conformal scalar equations. Ann. Phys. 82, 535 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  13. J. Bekenstein, Black holes with scalar charge. Ann. Phys. 91, 75 (1975)

    Article  ADS  Google Scholar 

  14. K. Bronnikov, Y. Kireev, Instability of black holes with scalar charge. Phys. Lett. A 67, 95 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  15. T. Torii, K. Maeda, M. Narita, Toward the no-scalar-hair conjecture in asymptotically de sitter spacetime. Phys. Rev. D 59(6), 064027 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  16. K.G. Zloshchastiev, Coexistence of black holes and a long-range scalar field in cosmology. Phys. Rev. Lett. 94(12), 121101 (2005)

    Article  ADS  PubMed  Google Scholar 

  17. E. Berti, V. Cardoso, L. Gualtieri, M. Horbatsch, U. Sperhake, Numerical simulations of single and binary black holes in scalar-tensor theories: circumventing the no-hair theorem. Phys. Rev. D 87(12), 124020 (2013)

    Article  ADS  Google Scholar 

  18. C.A. Herdeiro, E. Radu, Kerr black holes with scalar hair. Phys. Rev. Lett. 112(22), 221101 (2014)

    Article  ADS  PubMed  Google Scholar 

  19. D. Garfinkle, G.T. Horowitz, A. Strominger, Charged black holes in string theory. Phys. Rev. Lett. 43(10), 3140 (1991)

    ADS  MathSciNet  CAS  Google Scholar 

  20. O. Brodbeck, N. Straumann, Instability proof for Einstein-yang-mills solitons and black holes with arbitrary gauge groups. J. Math. Phys. 37(3), 1414–1433 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  21. M. Volkov, O. Brodbeck, G. Lavrelashvili, N. Straumann, The number of Sphaleron instabilities of the Bartnik-Mckinnon solitons and non-abelian black holes. Phys. Lett. B 349(4), 438–442 (1995)

    Article  ADS  CAS  Google Scholar 

  22. P. Bizon, R.M. Wald, The n= 1 colored black hole is unstable. Phys. Lett. B 267(2), 173–174 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  23. P. Bizon, Stability of Einstein Yang-Mills black holes. Phys. Lett. B 259(1–2), 53–57 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  24. Z.-H. Zhou, N. Straumann, Nonlinear perturbations of einstein-Yang-Mills solitons and non-abelian black holes. Nucl. Phys. B 360(1), 180–196 (1991)

    Article  ADS  Google Scholar 

  25. P. Bizon, Colored black holes. Phys. Rev. Lett. 64(24), 2844 (1990)

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  26. S. Mahapatra, I. Banerjee, Rotating hairy black holes and thermodynamics from gravitational decoupling. Phys. Dark Univ. 39, 101172 (2023)

    Article  Google Scholar 

  27. V.N.M.N.M. Bocharoval, K.A. Bronnikov, An exact solution of the system of Einstein equations and mass-free scalar field. Vestn. Mosk. Univ. Fiz. Astron 06, 706 (1970)

  28. J.D. Bekenstein, Nonexistence of baryon number for static black holes. Phys. Rev. D 5, 1239–1246 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  29. J. Bekenstein, Novel No-scalar-hair theorem for black holes. Phys. Rev. D 51(12), 6608 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  30. D. Sudarsky, A Simple proof of a no hair theorem in Einstein Higgs theory. Class. Quant. Grav. 12, 579–584 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  31. M. Heusler, A No hair theorem for selfgravitating nonlinear sigma models. J. Math. Phys. 33, 3497 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  32. C.A. Herdeiro, E. Radu, Asymptotically flat black holes with scalar hair: a review. Int. J. Mod. Phys. D 24(09), 1542014 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  33. T. Hertog, Towards a novel no-hair theorem for black holes. Phys. Rev. D 74, 084008 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  34. K.G. Zloshchastiev, On co-existence of black holes and scalar field. Phys. Rev. Lett. 94, 121101 (2005)

    Article  ADS  PubMed  Google Scholar 

  35. T. Torii, K. Maeda, M. Narita, No scalar hair conjecture in asymptotic de Sitter space-time. Phys. Rev. D 59, 064027 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  36. T. Torii, K. Maeda, M. Narita, Scalar hair on the black hole in asymptotically anti-de Sitter space-time. Phys. Rev. D 64, 044007 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  37. E. Winstanley, On the existence of conformally coupled scalar field hair for black holes in (anti-de Sitter space. Found. Phys. 33, 111–143 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  38. C. Martinez, R. Troncoso, J. Zanelli, Exact black hole solution with a minimally coupled scalar field. Phys. Rev. D 70, 084035 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  39. C. Martinez, J.P. Staforelli, R. Troncoso, Topological black holes dressed with a conformally coupled scalar field and electric charge. Phys. Rev. D 74, 044028 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  40. C. Martinez, R. Troncoso, Electrically charged black hole with scalar hair. Phys. Rev. D 74, 064007 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  41. T. Hertog, K. Maeda, Black holes with scalar hair and asymptotics in N = 8 supergravity. JHEP 07, 051 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  42. M. Henneaux, C. Martinez, R. Troncoso, J. Zanelli, Asymptotically anti-de Sitter spacetimes and scalar fields with a logarithmic branch. Phys. Rev. D 70, 044034 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  43. M. Henneaux, C. Martinez, R. Troncoso, J. Zanelli, Asymptotic behavior and Hamiltonian analysis of anti-de Sitter gravity coupled to scalar fields. Annals Phys. 322, 824–848 (2007)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  44. A.J. Amsel, D. Marolf, Energy bounds in designer gravity. Phys. Rev. D 74, 064006 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  45. S. Mahapatra, S. Priyadarshinee, G.N. Reddy, B. Shukla, Exact topological charged hairy black holes in AdS Space in \(D\)-dimensions. Phys. Rev. D 102(2), 024042 (2020)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  46. O.J. Dias, G.T. Horowitz, J.E. Santos, Black holes with only one killing field. JHEP 07, 115 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  47. O.J. Dias, P. Figueras, S. Minwalla, P. Mitra, R. Monteiro, J.E. Santos, Hairy black holes and solitons in global \(AdS_5\). JHEP 08, 117 (2012)

    Article  ADS  Google Scholar 

  48. S. Bhattacharyya, S. Minwalla, K. Papadodimas, Small hairy black holes in \(AdS_5 x S^5\). JHEP 11, 035 (2011)

    Article  ADS  Google Scholar 

  49. P. Basu, J. Bhattacharya, S. Bhattacharyya, R. Loganayagam, S. Minwalla, V. Umesh, Small hairy black holes in global AdS spacetime. JHEP 10, 045 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  50. A. Anabalon, Exact black holes and universality in the backreaction of non-linear sigma models with a potential in (A)dS4. JHEP 06, 127 (2012)

    Article  ADS  Google Scholar 

  51. A. Anabalon, J. Oliva, Exact hairy black holes and their modification to the universal law of gravitation. Phys. Rev. D 86, 107501 (2012)

    Article  ADS  Google Scholar 

  52. A. Anabalon, A. Cisterna, Asymptotically (anti) de sitter black holes and wormholes with a self interacting scalar field in four dimensions. Phys. Rev. D 85, 084035 (2012)

    Article  ADS  Google Scholar 

  53. B. Kleihaus, J. Kunz, E. Radu, B. Subagyo, Axially symmetric static scalar solitons and black holes with scalar hair. Phys. Lett. B 725, 489 (2013)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  54. T. Kolyvaris, G. Koutsoumbas, E. Papantonopoulos, G. Siopsis, Phase transition to a hairy black hole in asymptotically flat spacetime. JHEP 11, 133 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  55. P. González, E. Papantonopoulos, J. Saavedra, Y. Vásquez, Four-dimensional asymptotically AdS black holes with scalar hair. JHEP 12, 021 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  56. A. Anabalon, H. Maeda, New charged black holes with conformal scalar hair. Phys. Rev. D 81, 041501 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  57. C. Charmousis, T. Kolyvaris, E. Papantonopoulos, Charged C-metric with conformally coupled scalar field. Class. Quant. Grav. 26, 175012 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  58. G. Guo, P. Wang, H. Wu, H. Yang, Scalarized Kerr-Newman black holes. J. High Energy Phys. 2023(10), 1–20 (2023)

    Article  MathSciNet  Google Scholar 

  59. G. Guo, P. Wang, H. Wu, H. Yang, Scalarized Einstein-Maxwell-scalar black holes in anti-de Sitter spacetime. Eur. Phys. J. C 81(10), 864 (2021)

    Article  ADS  CAS  Google Scholar 

  60. S. Priyadarshinee, S. Mahapatra, Analytic three-dimensional primary hair charged black holes and thermodynamics. Phys. Rev. D 108, 044017 (2023)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  61. J.M. Maldacena, The Large N limit of superconformal field theories and supergravity. Int. J. Theor. Phys. 38, 1113 (1999)

    Article  MathSciNet  Google Scholar 

  62. S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon. Phys. Rev. D 78, 065034 (2008)

    Article  ADS  Google Scholar 

  63. S.A. Hartnoll, C.P. Herzog, G.T. Horowitz, Building a holographic superconductor. Phys. Rev. Lett. 101, 031601 (2008)

    Article  ADS  PubMed  Google Scholar 

  64. S.A. Hartnoll, C.P. Herzog, G.T. Horowitz, Holographic superconductors. JHEP 12, 015 (2008)

    Google Scholar 

  65. A. Dey, S. Mahapatra, T. Sarkar, Very general holographic superconductors and entanglement thermodynamics. JHEP 12, 135 (2014)

    Article  ADS  Google Scholar 

  66. A. Dey, S. Mahapatra, T. Sarkar, Generalized holographic superconductors with higher derivative couplings. JHEP 06, 147 (2014)

    Article  ADS  Google Scholar 

  67. S. Mahapatra, P. Phukon, T. Sarkar, Generalized superconductors and holographic optics. JHEP 01, 135 (2014)

    Google Scholar 

  68. S.S. Gubser, A. Nellore, Mimicking the QCD equation of state with a dual black hole. Phys. Rev. D 78, 086007 (2008)

    Article  ADS  Google Scholar 

  69. S.W. Hawking, D.N. Page, Thermodynamics of black holes in anti-de sitter space. Commun. Math. Phys. 87, 577 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  70. A. Chamblin, R. Emparan, C.V. Johnson, R.C. Myers, Charged AdS black holes and ieeetrcatastrophic holography. Phys. Rev. D 60, 064018 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  71. A. Chamblin, R. Emparan, C.V. Johnson, R.C. Myers, Holography, thermodynamics and fluctuations of charged AdS black holes. Phys. Rev. D 60, 104026 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  72. A. Sahay, T. Sarkar, G. Sengupta, Thermodynamic geometry and phase transitions in Kerr-Newman-AdS black holes. JHEP 04, 118 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  73. A. Dey, S. Mahapatra, T. Sarkar, Thermodynamics and entanglement entropy with Weyl corrections. Phys. Rev. D 94(2), 026006 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  74. E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge theories. Adv. Theor. Math. Phys. 2, 505–532 (1998)

    Article  MathSciNet  Google Scholar 

  75. D. Dudal, S. Mahapatra, Thermal entropy of a quark-antiquark pair above and below deconfinement from a dynamical holographic QCD model. Phys. Rev. D 96(12), 126010 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  76. S.A. Hartnoll, P. Kovtun, Hall conductivity from dyonic black holes. Phys. Rev. D 76, 066001 (2007)

    Article  ADS  Google Scholar 

  77. S. Dutta, A. Jain, R. Soni, Dyonic black hole and holography. JHEP 12, 060 (2013)

    Google Scholar 

  78. M.M. Caldarelli, O.J.C. Dias, D. Klemm, Dyonic AdS black holes from magnetohydrodynamics. JHEP 03, 025 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  79. S.A. Hartnoll, P.K. Kovtun, M. Muller, S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter, and in dyonic black holes. Phys. Rev. B 76, 144502 (2007)

    Article  ADS  Google Scholar 

  80. K. Goldstein, N. Iizuka, S. Kachru, S. Prakash, S.P. Trivedi, A. Westphal, Holography of dyonic dilaton black branes. JHEP 10, 027 (2010)

    Article  ADS  Google Scholar 

  81. N. Kundu, P. Narayan, N. Sircar, S.P. Trivedi, Entangled Dilaton Dyons. JHEP 03, 155 (2013)

    Google Scholar 

  82. M.M. Caldarelli, A. Christodoulou, I. Papadimitriou, K. Skenderis, Phases of planar AdS black holes with axionic charge. JHEP 04, 001 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  83. A. Donos, J.P. Gauntlett, T. Griffin, L. Melgar, DC conductivity of magnetised holographic matter. JHEP 01, 113 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  84. J. Sadeghi, B. Pourhassan, M. Rostami, P-V criticality of logarithm-corrected dyonic charged AdS black holes. Phys. Rev. D 94(6), 064006 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  85. S.I. Kruglov, Dyonic and magnetized black holes based on nonlinear electrodynamics. Eur. Phys. J. C 80(3), 250 (2020)

    Article  ADS  CAS  Google Scholar 

  86. S.I. Kruglov, Dyonic black holes with nonlinear logarithmic electrodynamics. Grav. Cosmol. 25(2), 190–195 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  87. S. Panahiyan, S.H. Hendi, N. Riazi, \(AdS_{4}\) dyonic black holes in gravity’s rainbow. Nucl. Phys. B 938, 388–415 (2019)

    Article  ADS  CAS  Google Scholar 

  88. S. Hajkhalili, A. Sheykhi, Topological dyonic dilaton black holes in AdS spaces. Phys. Rev. D 99(2), 024028 (2019)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  89. S.H. Hendi, N. Riazi, S. Panahiyan, Holographical aspects of dyonic black holes: massive gravity generalization. Annalen Phys. 530(2), 1700211 (2018)

    Article  ADS  Google Scholar 

  90. P. Chaturvedi, A. Das, G. Sengupta, Thermodynamic geometry and phase transitions of dyonic charged AdS black holes. Eur. Phys. J. C 77(2), 110 (2017)

    Article  ADS  Google Scholar 

  91. K.-Y. Kim, K.K. Kim, Y. Seo, S.-J. Sin, Thermoelectric conductivities at finite magnetic field and the Nernst effect. JHEP 07, 027 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  92. A. Amoretti, D.K. Brattan, N. Magnoli, M. Scanavino, Magneto-thermal transport implies an incoherent Hall conductivity. JHEP 08, 097 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  93. N. Bhatnagar, S. Siwach, DC conductivity with external magnetic field in hyperscaling violating geometry. Int. J. Mod. Phys. A 33(04), 1850028 (2018)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  94. J. Lindgren, I. Papadimitriou, A. Taliotis, J. Vanhoof, Holographic hall conductivities from dyonic backgrounds. JHEP 07, 094 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  95. Z. Zhou, J.-P. Wu, Y. Ling, DC and Hall conductivity in holographic massive Einstein-Maxwell-Dilaton gravity. JHEP 08, 067 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  96. S. Khimphun, B.-H. Lee, C. Park, Y.-L. Zhang, Anisotropic dyonic black brane and its effects on holographic conductivity. JHEP 10, 064 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  97. Y. Bai, M. Korwar, Hairy magnetic and dyonic black holes in the standard model. JHEP 04, 119 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  98. S. Li, H. Lu, H. Wei, Dyonic (A)dS black holes in Einstein-Born-Infeld theory in diverse dimensions. JHEP 07, 004 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  99. M. BravoGaete, S. Gomez, M. Hassaine, Black holes with Lambert W function horizons. Eur. Phys. J. C 79(3), 200 (2019)

    Article  ADS  Google Scholar 

  100. M. Cadoni, P. Pani, Holography of charged dilatonic black branes at finite temperature. JHEP 04, 049 (2011)

    Article  ADS  Google Scholar 

  101. S. Priyadarshinee, S. Mahapatra, I. Banerjee, Analytic topological hairy dyonic black holes and thermodynamics. Phys. Rev. D 104(8), 084023 (2021)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  102. S. Mahapatra, P. Roy, On the time dependence of holographic complexity in a dynamical Einstein-Dilaton model. JHEP 11, 138 (2018)

    Article  ADS  Google Scholar 

  103. H. Bohra, D. Dudal, A. Hajilou, S. Mahapatra, Anisotropic string tensions and inversely magnetic catalyzed deconfinement from a dynamical ads/qcd model. Phys. Lett. B 801, 135184 (2020)

    Article  MathSciNet  CAS  Google Scholar 

  104. H. Bohra, D. Dudal, A. Hajilou, S. Mahapatra, Chiral transition in the probe approximation from an Einstein-Maxwell-Dilaton gravity model. Phys. Rev. D 103(8), 086021 (2021)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  105. D. Dudal, A. Hajilou, S. Mahapatra, A quenched 2-flavour Einstein-Maxwell-Dilaton gauge-gravity model. Eur. Phys. J. A 57(4), 142 (2021)

    Article  ADS  CAS  Google Scholar 

  106. D. Dudal, S. Mahapatra, Interplay between the holographic QCD phase diagram and entanglement entropy. J. High Energy Phys. 2018(7), 1–29 (2018)

    Article  Google Scholar 

  107. S. Mahapatra, Interplay between the holographic QCD phase diagram and mutual & n-partite information. J. High Energy Phys. 2019(4), 1–37 (2019)

    Article  MathSciNet  Google Scholar 

  108. S. He, S.-Y. Wu, Y. Yang, P.-H. Yuan, Phase structure in a dynamical soft-wall holographic QCD model. J. High Energy Phys. 2013(4), 1–23 (2013)

    Article  MathSciNet  Google Scholar 

  109. I. Aref’eva, K. Rannu, Holographic anisotropic background with confinement-deconfinement phase transition. JHEP 05, 206 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  110. I.Y. Aref’eva, K. Rannu, P. Slepov, Holographic model for heavy quarks in anisotropic hot dense QGP with external magnetic field. JHEP 07, 161 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  111. I.Y. Aref’eva, A. Ermakov, K. Rannu, P. Slepov, Holographic model for light quarks in anisotropic hot dense QGP with external magnetic field. Eur. Phys. J. C 83(1), 79 (2023)

    Article  ADS  Google Scholar 

  112. I.Y. Aref’eva, K. Rannu, P.S. Slepov, Anisotropic solutions for a holographic heavy-quark model with an external magnetic field. Teor. Mat. Fiz. 207(1), 44–57 (2021)

    Article  MathSciNet  Google Scholar 

  113. T. Regge, J.A. Wheeler, Stability of a schwarzschild singularity. Phys. Rev. 108(4), 1063 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  114. F.J. Zerilli, Gravitational field of a particle falling in a schwarzschild geometry analyzed in tensor harmonics. Physical Review D 2(10), 2141 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  115. C. Vishveshwara, Scattering of gravitational radiation by a schwarzschild black-hole. Nature 227(5261), 936–938 (1970)

    Article  ADS  CAS  PubMed  Google Scholar 

  116. E. Berti, V. Cardoso, J.A. Gonzalez, U. Sperhake, M. Hannam, S. Husa, B. Brügmann, Inspiral, merger, and ringdown of unequal mass black hole binaries: a multipolar analysis. Phys. Rev. D 76, 064034 (2007)

    Article  ADS  Google Scholar 

  117. G.T. Horowitz, V.E. Hubeny, Quasinormal modes of ads black holes and the approach to thermal equilibrium. Phys. Rev. D 62(2), 024027 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  118. F. Pretorius, Evolution of binary black hole spacetimes. Phys. Rev. Lett. 95, 121101 (2005)

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  119. M. Campanelli, C.O. Lousto, P. Marronetti, Y. Zlochower, Accurate evolutions of orbiting black-hole binaries without excision. Phys. Rev. Lett. 96, 111101 (2006)

    Article  ADS  CAS  PubMed  Google Scholar 

  120. J.D.E. Creighton, Search techniques for gravitational waves from black hole ringdowns. Phys. Rev. D 60, 022001 (1999)

    Article  ADS  Google Scholar 

  121. Y. Tsunesada, D. Tatsumi, N. Kanda, H. Nakano, Black-hole ringdown search in TAMA300: Matched filtering and event selections. Class. Quant. Grav. 22, S1129–S1138 (2005)

    Article  Google Scholar 

  122. E. Berti, V. Cardoso, A.O. Starinets, Quasinormal modes of black holes and black branes. Class. Quant. Grav. 26, 163001 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  123. E. Berti, K.D. Kokkotas, Quasinormal modes of Reissner-Nordström-anti-de Sitter black holes: Scalar, electromagnetic and gravitational perturbations. Phys. Rev. D 67, 064020 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  124. K.D. Kokkotas, B.G. Schmidt, Quasinormal modes of stars and black holes. Living Rev. Rel. 2, 2 (1999)

    Article  Google Scholar 

  125. V. Ferrari, “The quasinormal modes of stars and black holes,” in International Conference on Gravitational Waves: Sources and Detectors, (1996)

  126. J.S.F. Chan, R.B. Mann, Scalar wave falloff in topological black hole backgrounds. Phys. Rev. D 59, 064025 (1999)

    Article  ADS  Google Scholar 

  127. V. Cardoso, J.P.S. Lemos, Scalar, electromagnetic and Weyl perturbations of BTZ black holes: Quasinormal modes. Phys. Rev. D 63, 124015 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  128. G. Koutsoumbas, S. Musiri, E. Papantonopoulos, G. Siopsis, Quasi-normal modes of electromagnetic perturbations of four-dimensional topological black holes with scalar hair. J. High Energy Phys. 2006(10), 006 (2006)

    Article  MathSciNet  Google Scholar 

  129. C. Martinez, R. Troncoso, J. Zanelli, Exact black hole solution with a minimally coupled scalar field. Phys. Rev. D 70(8), 084035 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  130. J. Shen, B. Wang, R.-K. Su, C.-Y. Lin, R.-G. Cai, The phase transition and the quasi-normal modes of black holes. J. High Energy Phys. 2007(07), 037 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  131. G. Koutsoumbas, E. Papantonopoulos, G. Siopsis, Phase transitions in charged topological-ads black holes. J. High Energy Phys. 2008(05), 107 (2008)

    Article  MathSciNet  Google Scholar 

  132. Y. Liu, D.-C. Zou, B. Wang, Signature of the van der Waals like small-large charged ads black hole phase transition in quasinormal modes. J. High Energy Phys. 2014(9), 1–20 (2014)

    Article  MathSciNet  CAS  Google Scholar 

  133. S. Mahapatra, Thermodynamics, phase transition and quasinormal modes with weyl corrections. JHEP 04, 142 (2016)

    ADS  MathSciNet  Google Scholar 

  134. S.-W. Wei, Y.-X. Liu, Y.-Q. Wang, Probing the relationship between the null geodesics and thermodynamic phase transition for rotating Kerr-AdS black holes. Phys. Rev. D 99(4), 044013 (2019)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  135. B. Liang, S.-W. Wei, Y.-X. Liu, Quasinormal modes and Van der Waals like phase transition of charged AdS black holes in Lorentz symmetry breaking massive gravity. Int. J. Mod. Phys. D 28(09), 1950113 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  136. A.-C. Li, H.-Q. Shi, D.-F. Zeng, Phase structure and quasinormal modes of a charged AdS dilaton black hole. Phys. Rev. D 97(2), 026014 (2018)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  137. D.-C. Zou, Y. Liu, R.-H. Yue, Behavior of quasinormal modes and Van der Waals-like phase transition of charged AdS black holes in massive gravity. Eur. Phys. J. C 77(6), 365 (2017)

    Article  ADS  Google Scholar 

  138. M. Chabab, H. El Moumni, S. Iraoui, K. Masmar, Phase transition of charged-AdS black holes and quasinormal modes?: a time domain analysis. Astrophys. Space Sci. 362(10), 192 (2017)

    Article  ADS  Google Scholar 

  139. M. Chabab, H. El Moumni, S. Iraoui, K. Masmar, Behavior of quasinormal modes and high dimension RN-AdS black hole phase transition. Eur. Phys. J. C 76(12), 676 (2016)

    Article  ADS  Google Scholar 

  140. M. Zhang, C.-M. Zhang, D.-C. Zou, R.-H. Yue, Phase transition and quasinormal modes for charged black holes in 4D Einstein-Gauss-Bonnet gravity. Chin. Phys. C 45(4), 045105 (2021)

    Article  ADS  CAS  Google Scholar 

  141. B. Wang, C.-Y. Lin, E. Abdalla, Quasinormal modes of Reissner-Nordstrom anti-de Sitter black holes. Phys. Lett. B 481, 79–88 (2000)

    Article  ADS  MathSciNet  CAS  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge Bhavesh Gupta for necessary discussion and Subhash Mahapatra for his contributions toward finalizing the manuscript. Also the author would like to thank Sudipti Priyadarsinee for thorough reading and identifying the essential corrections. The work of S.P is supported by Grant No. 16-6(DEC.2017)/2018 (NET/CSIR) of UGC, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Supragyan Priyadarshinee.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyadarshinee, S. Quasinormal mode of dyonic hairy black hole and its interplay with phase transitions. Eur. Phys. J. Plus 139, 258 (2024). https://doi.org/10.1140/epjp/s13360-024-05044-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-05044-y

Navigation