Skip to main content
Log in

Thermal properties of a one-dimensional dirac oscillator in a homogeneous electric field with generalized snyder model: path integral treatment

  • Review
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we derive the relativistic Green function using a path integral formulation for a (\(1+1\))-Dirac oscillator system under a homogeneous electric field within the framework of the Snyder de Sitter model. Consequently, we calculate the propagator function and the corresponding spectral energies. The thermodynamic properties of a single electron are then extracted under high-temperature conditions for four sets of deformation parameters. We examine the impact of the deformation parameters on these properties and infer the limit cases for small parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

No data associated in the manuscript.

References

  1. H.S. Snyder, Phys. Rev. 71, 38 (1947)

    Article  ADS  MathSciNet  Google Scholar 

  2. H.S. Snyder, Phys. Rev. 72, 68 (1947)

    Article  ADS  MathSciNet  Google Scholar 

  3. R. Balian, D. Bessis, G.A. Mezincescu, Phys. Rev. B 51, 17624 (1995)

    Article  ADS  CAS  Google Scholar 

  4. I.O. Vakarchuk, G. Panochho, Ukr. J. Phys. 62, 123 (2017)

    Article  Google Scholar 

  5. H. Falomir, J. Gamboa, M. Loewe, M. Nieto, J. Phys. A: Math. Theor. 45, 135308 (2012)

    Article  ADS  Google Scholar 

  6. K. Konishi, G. Pauti, P. Provero, Phys. Lett. B 234, 276 (1990)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  7. S. Capozziello, G. Lambiase, G. Scarpetta, Int. J. Theor. Phys. 39, 15 (2000)

    Article  CAS  Google Scholar 

  8. F. Scardigli, R. Casadio, Class. Quantum Grav. 20, 3915 (2003)

    Article  ADS  Google Scholar 

  9. L.J. Garay, Int. J. Mod. Phys. A 10, 145 (1995)

    Article  ADS  Google Scholar 

  10. G. Amelino-Camelia, L. Smolin, A. Starodubtsev, Class. Quant. Grav. 21, 3095 (2004)

    Article  ADS  Google Scholar 

  11. S. Mignemi, Class. Quantum Grav. 29, 215019 (2012)

    Article  Google Scholar 

  12. A. Tawfik, A. Diab, Int. J. Models Phys. D 23, 1430025 (2014)

    Article  ADS  CAS  Google Scholar 

  13. S. Sargolzaeipor, H. Hassanabadi, W.S. Chung, Commun. Theor. Phys. 71, 1301 (2019)

    Article  ADS  CAS  Google Scholar 

  14. M. Arifuzzaman, M. Moniruzzaman, S.B. Faruque, IJRET 02, 09 (2013)

    Google Scholar 

  15. V. Tyagi, S.K. Rai, B.P. Mandal, EPL 128, 30004 (2020)

    Article  Google Scholar 

  16. M. Betrouche, M. Maamache, J.R. Choi, Sci. Rep. 3(1), 3221 (2013)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  17. K. Nouicer, J. Phys. A: Math. Theor. 39, 5125 (2006)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  18. A. Merad, M. Aouachria, M. Merad, T. Birkandan, Int. J. Mod. Phys. A 34, 1950218 (2019)

    Article  ADS  CAS  Google Scholar 

  19. B. Hamil, M. Merad, Few-Body Syst. 60, 36 (2019)

    Article  ADS  Google Scholar 

  20. F. Bastianelli, P. Van Nieuwenhuizen, Path Integrals and Anomalies in Curved Space (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  21. H. Benzair, T. Boudjedaa, M. Merad, J. Math. Phys. 53, 123516 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  22. H. Benzair, T. Boudjedaa, M. Merad, Eur. Phys. J. Plus. 132, 1 (2017)

    Article  Google Scholar 

  23. A. Merad, M. Aouachria, H. Benzair, Few-Body Syst. 61, 1 (2020)

    Article  ADS  Google Scholar 

  24. H. Benzair, T. Boudjedaa, M. Merad, Int. J. Geom. Methods Mod. Phys. 18, 2130002 (2021)

    Article  Google Scholar 

  25. H. Benzair, T. Boudjedaa, M. Merad, Int. J. Mod. Phys. A 35, 2050180 (2020)

    Article  ADS  CAS  Google Scholar 

  26. S. Mignemi, Mod. Phys. Lett. A 25, 1697 (2010)

    Article  ADS  Google Scholar 

  27. D.M. Gitman, S.I. Zlatev, W. Da Cruz, Braz. J. Phys. 26, 419 (1996)

    ADS  Google Scholar 

  28. H. Bada, M. Aouachria, J. Phys. A: Math. Theor. 53, 265401 (2020)

    Article  ADS  Google Scholar 

  29. H. Hamdi, H. Benzair, M. Merad, T. Boudjedaa, Eur. Phys. J. Plus. 137, 1 (2022)

    Article  Google Scholar 

  30. C. Grosche, F. Steiner, Handbook of Feynman Path Integrals (Springer, Berlin, 1998)

    Book  Google Scholar 

  31. J. Schwinger, Phys. Rev. 82, 664 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  32. C. Quesne, Symmetry, Integrability and Geometry: Methods and Applications. SIGMA 8, 080 (2012)

  33. D.C. Khandekar, S.V. Lawande, K.V. Bhagwat, Path integral methods and their applications (World Scientific, Singapore, 1993)

    Book  Google Scholar 

  34. A.P. Raposo, H.J. Weber, D.E. Alvarez-Castillo, M. Kirchbach, J. Centr. Eur. Phys. 5, 259 (2007)

    Google Scholar 

  35. Greiner, Walter. Relativistic quantum mechanics. Vol. 2. springer, Berlin, (2000)

  36. W. Greiner, L. Neise, H. Stocker, D. Rischke, Thermodynamics and Statistical Mechanics (Springer, New York, 1995)

    Google Scholar 

  37. M.H. Pacheco, R.R. Landim, C.A.S. Almeida, Phys. Lett. A 311, 93 (2003)

    Article  ADS  MathSciNet  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thouiba Benzair.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benzair, T., Chohra, T. & Boudjedaa, T. Thermal properties of a one-dimensional dirac oscillator in a homogeneous electric field with generalized snyder model: path integral treatment. Eur. Phys. J. Plus 139, 204 (2024). https://doi.org/10.1140/epjp/s13360-024-04998-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04998-3

Navigation