Skip to main content
Log in

Duality as a method to derive a gauge invariant massive electrodynamics and new interactions

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Taking into account the recent developments associated with duality in physics, this article is focused on investigating the properties of a tensor generalization of the electrodynamics dual to the standard vector model even considering the full radiative corrections. A discussion on duality is extended for nonlinearly interacting models. The alternative tensor structure allows a new local self-interaction and also a partial gauge invariant mass term. In this way, the renormalization conditions, a new interaction, Ward–Takahashi identities for all the sets of gauge symmetries, and the Schwinger–Dyson quantum equations are carefully provided to consistently characterize the propagating modes of the quantum system. The possibility of this gauge invariant massive extension is considered from the perspective of a generalized Stueckelberg procedure for higher derivative systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Furnishing also a criterium to establish the nonlinear field-dependent interactions.

  2. Meaning that there are no contact terms.

  3. Associated with a dual relation with Maxwell theory.

  4. See “Appendix 1.”

  5. In order to establish the spinor interaction, we are considering the suggestions from the constraints assumed for the external c-number sources. The latter are the ones used in the obtainment of Green functions from the path integral. According to the previous sections, the constraints are associated with the local symmetries.

  6. We are considering the standard notation .

  7. V denotes the number of vertices, \(P_\gamma\) is the number of bosonic propagators, \(P_e\) the number of fermionic propagators, with \(N_\gamma\) and \(N_e\) being the number of bosonic and fermionic external lines, respectively. L denotes the number of loops.

  8. For a quantum field generically denoted as \(\mathcal {Q}_A(x)\), we consider its Fourier transform as \(\mathcal {Q}_A(x)=\int \frac{d^4p}{(2\pi )^4}\mathcal {Q}_A(p)e^{-ip.x}\).

  9. This parameter is chosen to be in this scale in order to enable the mechanism described in this subsection.

  10. Namely, replacing \(\tilde{\lambda }\) by \(\tilde{\lambda }k^4\) and fixing \(\lambda =\tilde{\lambda }\).

  11. The local symmetry breaking is just in the self-interaction term.

  12. We denote by \(\mathcal {W}^{(0)}\) the connected Green function generator in the free limit \(\beta \rightarrow 0\). \(\tilde{\delta }^{\mu \nu \chi \rho }\equiv \left( \Delta ^{\mu \nu \chi \rho }-\frac{1}{4}\eta ^{\mu \nu }\eta ^{\chi \rho }\right)\) denotes the traceless projector with \(\Delta ^{\mu \nu \chi \rho }\) being the symmetrized identity. The propagator \(\mathcal {G}_{\chi \rho \sigma \gamma }(k)\) is the same as the one presented in the previous section but with a specific relation between the gauge fixing parameters.

  13. Which also furnish hints for the possible couplings with fermions.

  14. \(\omega _{ij}\) is the spatial part of the longitudinal projector defined in the “Appendix 1.”

  15. TT denotes a transverse and traceless field.

  16. The \(\nabla ^2\) operator has negative eigenvalues.

  17. We are considering the notation associated with the product \(\mathcal {D}\Phi _A\equiv \Pi _{A} \mathcal {D}\Phi _A(x)\) with A denoting the N independent components of a given field generically denoted as \(\Phi _A(x)\).

  18. Enjoying not just the transverse but complete linearized diffeomorphism symmetry.

References

  1. N. Seiberg, T. Senthil, C. Wang, E. Witten, Ann. Phys. 374, 395–433 (2016)

    Article  CAS  ADS  Google Scholar 

  2. A. Karch, D. Tong, Phys. Rev. X 6, 031043 (2016)

    Google Scholar 

  3. J. Murugan, H. Nastase, J. High Energy Phys. 2017, 159 (2017)

    Article  Google Scholar 

  4. C. Turner, PoS Modave 2018, 001 (2019)

    Google Scholar 

  5. C. Choi, J. High Energy Phys. 2020, 6 (2020)

    Article  Google Scholar 

  6. Y. Ferreiros, E. Fradkin, Ann. Phys. 399, 1–25 (2018)

    Article  CAS  ADS  Google Scholar 

  7. S. Ohya, Phys. Rev. A 105, 03312 (2022)

    Article  ADS  Google Scholar 

  8. H. Kramers, G. Wannier, Phys. Rev. 60, 252–262 (1941)

    Article  MathSciNet  ADS  Google Scholar 

  9. M. Peskin, Ann. Phys. 113, 122 (1978)

    Article  CAS  ADS  Google Scholar 

  10. V. Borokhov, A. Kapustin, X. Wu, JHEP 0211, 049 (2002)

    Article  ADS  Google Scholar 

  11. A. Khoudeir, R. Montemayor, L.F. Urrutia, Phys. Rev. D 78, 065041 (2008)

    Article  ADS  Google Scholar 

  12. H. Casini, R. Montemayor, L.F. Urrutia, Phys. Rev. D 68, 065011 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  13. N. Boulanger et al., JHEP 0306, 060 (2003)

    Article  ADS  Google Scholar 

  14. E.A. Bergshoeff, O. Hohm, V.A. Penas et al., J. High Energy Phys. 2016, 26 (2016)

    Article  Google Scholar 

  15. A.K. Das, J. Frenkel, C. Schubert, Phys. Lett. B 720, 414–418 (2013)

    Article  CAS  ADS  Google Scholar 

  16. S. Deser, R. Jackiw, S. Templeton, Phys. Rev. Lett. 48, 975–978 (1982)

    Article  CAS  ADS  Google Scholar 

  17. P.K. Townsend, K. Pilch, P. Van Nieuwenhausen, Phys. Lett. B 136, 38–42 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  18. S. Deser, R. Jackiw, Phys. Lett. B 139, 371 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  19. J.M. Maldacena, Int. J. Theor. Phys. 38, 1113–1133 (1999)

    Article  Google Scholar 

  20. H. Nastase, String Methods for Condensed Matter Physics, 1st edn. (Cambrige University Press, Cambrige, 2017)

    Book  Google Scholar 

  21. X. Kong, T. Wang, L. Zhao, Phys. Lett. B 836, 137623 (2023)

    Article  CAS  Google Scholar 

  22. D. Dalmazi, E.L. Mendonca, J. Phys. A 39, 9355–9363 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  23. R.V. Maluf, F.A.G. Silveira, J.E.G. Silva, C.A.S. Almeida, Phys. Rev. D 102, 025006 (2020)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  24. N. Boulanger, A. Campoleoni, I. Cortese, Phys. Lett. B 782, 285 (2018)

    Article  CAS  ADS  Google Scholar 

  25. H. Aishal, T.L. Curtright, JHEP 09, 063 (2019)

    Article  ADS  Google Scholar 

  26. C. de Rham, V. Pozsgay, Phys. Rev. D 102, 083508 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  27. L. Heisenberg, G. Trenkler, JCAP 05, 09 (2020)

    Google Scholar 

  28. M. Kalb, D. Ramond, Phys. Rev. D 9, 2273 (1974)

    Article  ADS  Google Scholar 

  29. K. Kampf, J. Novotn, J. Trnka, Eur. Phys. J. C 50, 385 (2007)

    Article  CAS  ADS  Google Scholar 

  30. K. Kampf, J. Novotn, J. Trnka, Phys. Rev. D 81, 116004 (2010)

    Article  ADS  Google Scholar 

  31. Y. Matsuo, A. Sugamoto, Prog. Theor. Phys. 2021, 12 12C104 (2021)

    Google Scholar 

  32. A. Smailagic, E. Spallucci, J. Phys. A 34, L 435 (2001)

    Article  ADS  Google Scholar 

  33. I.A. Batalin, E.S. Fradkin, Phys. Lett. 122B, 157 (1983)

    Article  CAS  ADS  Google Scholar 

  34. A. Hell, JCAP 01, 056 (2022)

    Article  ADS  Google Scholar 

  35. H. Ruegg, M.R. Altaba, Int. J. Mod. Phys. A 19, 3265 (2004)

    Article  CAS  ADS  Google Scholar 

  36. D. Dalmazi, R.C. Santos, Phys. Rev. D 87, 085021 (2013)

    Article  ADS  Google Scholar 

  37. D. Dalmazi, R.C. Santos, Phys. Rev. D 84, 045027 (2011)

    Article  ADS  Google Scholar 

  38. J.F. Donoghue, G. Menezes, Phys. Rev. D 104, 045010 (2021). [arXiv:2105.00898]

    Article  CAS  ADS  Google Scholar 

  39. J.F. Donoghue, G. Menezes, JHEP 2021, 10 (2021)

    Article  Google Scholar 

  40. L. Modesto, I.L. Shapiro, Phys. Lett. B 755, 279–284 (2016)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  41. J. Bonifacio, P.G. Ferreira, K. Hinterbichler, Phys. Rev. D 91, 125008 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  42. E. Alvarez, D. Blas, J. Garriga, E. Verdaguer, Nucl. Phys. B 756, 148–170 (2006)

    Article  ADS  Google Scholar 

  43. A.A. Serrano, L.J. Garay, M. Liska, Phys. Rev. D 106, 064024 (2022)

    Article  ADS  Google Scholar 

  44. R. Contant, M.Q. Huber, Phys. Rev. D 101, 014016 (2020)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  45. P. Lowdon, Phys. Lett. B 786, 399–402 (2018)

    Article  CAS  ADS  Google Scholar 

  46. P.A.M. Dirac, Lectures on Quantum Mechanics (Yeshiva University, New York, 1964)

    Google Scholar 

  47. M. Schwartz, Quantum Field Theory and The Standart Model (Cambridge University Press, New York, 2014)

    Google Scholar 

  48. O.A. Acevedo, B.M. Pimentel, J. Beltrán, D.E. Soto, Eur. Phys. J. Plus 136, 895 (2021)

    Article  Google Scholar 

  49. F. Rorlich, Phys. Rev. 80, 4 (1950)

    Google Scholar 

  50. M. Dutsch, F. Krahe, G. Scharf, Il Nouvo Cimento 106, A3 (1992)

    Google Scholar 

  51. D.G. Boulware, S. Deser, Phys. Rev. D 6, 3368–3382 (1972)

    Article  ADS  Google Scholar 

  52. J. Goldstone, A. Salam, S. Weinberg, Phys. Rev. 127, 995 (1962)

    Article  ADS  Google Scholar 

  53. S. Desser, J. Trutbacht, Can. J. Phys. 44, 1715 (1966)

    Article  ADS  Google Scholar 

  54. C. de Rham, G. Gabadadzec, A.J. Tolley, JHEP 11, 093 (2011)

    Article  Google Scholar 

  55. A. Hell, J. High Energy Phys. 2022, 167 (2022)

    Article  Google Scholar 

  56. E.C.G. Stueckelberg, Helv. Phys. Acta 11, 225–244 (1938)

    CAS  Google Scholar 

  57. H. Wang, X. Miao, L. Shao, Phys. Lett. B 820, 136596 (2017)

    Article  Google Scholar 

  58. M. Kenna-Allison, A.E. Gumrukcuoglu, K. Koyama, Phys. Rev. D 102, 103524 (2020)

    Article  MathSciNet  CAS  ADS  Google Scholar 

  59. E. Bergshoeff, D. Grumiller, S. Prohazka et al., J. High Energy Phys. 2017, 114 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

G.B. de Gracia thanks the São Paulo Research Foundation – FAPESP Post Doctoral grant No. 2021/12126-5. B.M. Pimentel thanks CNPq for partial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. de Gracia.

Appendices

Appendix 1

The spin 1 projectors, from which the rank 2 ones are constructed, are listed below

$$\begin{aligned} \theta _{\mu \nu }(k)=\eta _{\mu \nu }-\frac{k_\mu k_\nu }{k^2}\quad , \quad \omega _{\mu \nu }= \frac{k_\mu k_\nu }{k^2} \end{aligned}$$
(91)

With the properties

$$\begin{aligned} \theta _{\mu \nu }(k)\theta ^{\mu \alpha }(k)=\theta ^{\alpha }_\nu (k)\,\ \omega _{\mu \nu }(k)\omega ^{\mu \alpha }(k)=\omega ^{\alpha }_\nu (k)\ ,\ \theta _{\mu \nu }(k)\omega ^{\mu \alpha }(k)=0\ ,\ \theta _{\mu \nu }(k)+\omega _{\mu \nu }(k)=\eta _{\mu \nu } \end{aligned}$$
(92)

Then, the spin 2 projectors are of the following

$$\begin{aligned}{} & {} {P^{(2)}_{ss} }_{\ \ \rho \sigma }^{\mu \nu }=\frac{1}{2}\left( \theta ^{\mu }_{\ \rho }\theta ^{\nu }_{\ \sigma }+\theta ^{\mu }_{\ \sigma }\theta ^{\nu }_{\ \rho } \right) -\frac{\theta ^{\mu \nu }\theta _{\rho \sigma }}{(D-1)}\quad ,\quad {P^{(1)}_{ss} }_{\ \ \rho \sigma }^{\mu \nu }=\frac{1}{2}\left( \theta ^{\mu }_{\ \rho }\omega ^{\nu }_{\ \sigma }+\theta ^{\mu }_{\ \sigma }\omega ^{\nu }_{\ \rho }+\theta ^{\nu }_{\ \rho }\omega ^{\mu }_{\ \sigma }+\theta ^{\nu }_{\ \sigma }\omega ^{\mu }_{\ \rho } \right) \end{aligned}$$
(93)
$$\begin{aligned}{} & {} {P^{(0)}_{s\omega } }_{\ \ \rho \sigma }^{\mu \nu }=\frac{\theta ^{\mu \nu }\omega _{\rho \sigma }}{\sqrt{(D-1)}} \quad ,\quad {P^{(0)}_{ss} }_{\ \ \rho \sigma }^{\mu \nu }=\frac{\theta ^{\mu \nu }\theta _{\rho \sigma }}{(D-1)} \end{aligned}$$
(94)
$$\begin{aligned}{} & {} {P^{(0)}_{\omega \omega } }_{\ \ \rho \sigma }^{\mu \nu }=\omega ^{\mu \nu }\omega _{\rho \sigma } \quad ,\quad {P^{(0)}_{\omega s} }_{\ \ \rho \sigma }^{\mu \nu }=\frac{\omega ^{\mu \nu }\theta _{\rho \sigma }}{\sqrt{(D-1)}} \end{aligned}$$
(95)
$$\begin{aligned}{} & {} {P^{(0)}_{s\omega } }_{\ \ \rho \sigma }^{\mu \nu }=\frac{\theta ^{\mu \nu }\omega _{\rho \sigma }}{\sqrt{(D-1)}} \end{aligned}$$
(96)

The completeness relations are the following

$$\begin{aligned} {P^{(2)}_{ss} }_{\ \ \rho \sigma }^{\mu \nu }+{P^{(1)}_{ss} }_{\ \ \rho \sigma }^{\mu \nu }+{P^{(0)}_{ss} }_{\ \ \rho \sigma }^{\mu \nu }+{P^{(0)}_{\omega \omega } }_{\ \ \rho \sigma }^{\mu \nu }=\frac{1}{2}\left( \delta ^\mu _\rho \delta ^\nu _\sigma +\delta ^\nu _\rho \delta ^\mu _\sigma \right) \end{aligned}$$
(97)

The projector algebra reads \(P^{(s)}_{IL}P^{(\tilde{s}}_{JK}=\delta ^{s\tilde{s}}P^{(s)}_{IK}\)

Appendix 2

The gamma matrices obey the relations

$$\begin{aligned} \left\{ \gamma ^\mu ,\gamma ^\nu \right\} =2I_{4\times 4}\eta ^{\mu \nu } \end{aligned}$$
(98)

For the traces, we have

$$\begin{aligned} tr(\gamma ^\mu )&\,=\,0\,=\,tr(\gamma ^{\mu \ 1 }...\gamma ^{\mu n+1 }) \ , \ tr(\gamma ^\mu \gamma ^\nu )=4\eta ^{\mu \nu }\nonumber \\ tr(\gamma ^\mu \gamma ^\nu \gamma ^\rho \gamma ^\sigma )&\,=\,4\left( \eta ^{\mu \nu }\eta ^{\rho \sigma }-\eta ^{\mu \rho }\eta ^{\nu \sigma }+\eta ^{\mu \sigma }\eta ^{\nu \rho } \right) \end{aligned}$$
(99)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Gracia, G.B., Pimentel, B.M. Duality as a method to derive a gauge invariant massive electrodynamics and new interactions. Eur. Phys. J. Plus 139, 248 (2024). https://doi.org/10.1140/epjp/s13360-024-04980-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04980-z

Navigation