Skip to main content
Log in

Material boundaries in Carroll–Field–Jackiw Lorentz-violating electrodynamics

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper investigates certain aspects of the CPT-odd photon sector of the minimal Standard Model Extension (SME) in the presence of a perfectly conducting plate (perfect mirror). The considered sector is described by Carroll–Field–Jackiw (CFJ) electrodynamics, where Lorentz violation is due to the presence of a single background vector denoted as \(\left( k_{AF}\right) ^{\mu }\), which we treat perturbatively up to second order. Specifically, we derive the modified propagator for the electromagnetic field due to the presence of the perfect mirror, and we study the corresponding interaction between the mirror and a stationary point-like charge. Our results reveal that when the charge is positioned near the mirror, a spontaneous torque emerges, which is a unique effect of Lorentz symmetry breaking. Additionally, we demonstrate that the image method for this theory is applicable when the background vector has only the component perpendicular to the mirror.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

No Data associated in the manuscript.

References

  1. D. Colladay, V.A. Kostelecký, Phys. Rev. D 55, 6760 (1997)

    Article  ADS  CAS  Google Scholar 

  2. S.R. Coleman, S.L. Glashow, Phys. Rev. D 59, 116008 (1999)

    Article  ADS  Google Scholar 

  3. D. Colladay, V.A. Kostelecký, Phys. Rev. D 58, 116002 (1998)

    Article  ADS  Google Scholar 

  4. S.M. Carroll, G.B. Field, R. Jackiw, Phys Rev. D 41, 1231 (1990)

    Article  ADS  CAS  Google Scholar 

  5. L.H.C. Borges, A.F. Ferrari, Mod. Phys. Lett. A 37, 2250021 (2022)

    Article  ADS  Google Scholar 

  6. F.S. Ribeiro, P.D.S. Silva, M.M. Ferreira Jr., Phys. Rev. D 107, 096018 (2023)

  7. E. Barredo-Alamilla, L.F. Urrutia, M.M. Ferreira Jr., Phys. Rev. D 107, 096024 (2023)

  8. P.D.S. Silva, L. Lisboa-Santos, M.M. Ferreira Jr., M. Schreck, Phys. Rev. D 104, 116023 (2021)

  9. M.M. Ferreira Jr., J.A. Helayël-Neto, C.M. Reyes, M. Schreck, P.D.S. Silva, Phys. Lett. B 804, 135379 (2020)

    Article  MathSciNet  CAS  Google Scholar 

  10. J. Alfaro, A.A. Andrianov, M. Cambiaso, P. Giacconi, R. Soldati, Int. J. Mod. Phys. A 25, 3271 (2010)

    Article  ADS  CAS  Google Scholar 

  11. A.A. Andrianov, D. Espriu, P. Giacconi, R. Soldati, J. High Energy Phys. 09 (2009)

  12. L.C.T. Brito, J.C.C. Felipe, A.Y. Petrov, A.P. Baêta Scarpelli, Int. J. Mod. Phys. A 36, 2150033 (2021)

  13. T.R.S. Santos, R.F. Sobreiro, Eur. Phys. J. C 77, 903 (2017)

    Article  ADS  Google Scholar 

  14. J.C.C. Felipe, A.R. Vieira, A.L. Cherchiglia, A.P. Baêta Scarpelli, M. Sampaio, Phys. Rev. D 89, 105034 (2014)

  15. Y.M.P. Gomes, P.C. Malta, Phys. Rev. D 94, 025031 (2016)

    Article  ADS  Google Scholar 

  16. C. Adam, F.R. Klinkhamer, Nucl. Phys. B 607, 247 (2001)

    Article  ADS  Google Scholar 

  17. C. Adam, F.R. Klinkhamer, Nucl. Phys. B Nucl. Phys. B 657, 214 (2003)

    Article  ADS  Google Scholar 

  18. R. Casana, M.M. Ferreira Jr., E. da Hora, A.B.F. Neves, Eur. Phys. J. C 74, 3064 (2014)

    Article  ADS  Google Scholar 

  19. R. Casana, L. Sourrouille, Phys. Lett. B 726, 488 (2013)

    Article  ADS  CAS  Google Scholar 

  20. V.A. Kostelecký, M. Mewes, Phys. Rev. D 66, 056005 (2002)

    Article  ADS  Google Scholar 

  21. L.H.C. Borges, F.A. Barone, J.A. Helayë-Neto, Eur. Phys. J. C 74, 2937 (2014)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. L.H.C. Borges, F.A. Barone, Braz. J. Phys. 49, 571–582 (2019)

    Article  ADS  Google Scholar 

  23. L.H.C. Borges, F.A. Barone, Eur. Phys. J. C 76, 64 (2016)

    Article  ADS  Google Scholar 

  24. R. Casana, M.M. Ferreira Jr., A.R. Gomes, F.E.P. dos Santos, Phys. Rev. D 82, 125006 (2010)

  25. R. Casana, M.M. Ferreira Jr., M.R.O. Silva, Phys. Rev. D 81, 105015 (2010)

  26. R. Casana, M.M. Ferreira Jr., A.R. Gomes, P.R.D. Pinheiro, Phys. Rev. D 80, 125040 (2009)

  27. V.A. Kostelecký, M. Mewes, Phys. Rev. Lett. 87, 251304 (2001)

    Article  ADS  PubMed  Google Scholar 

  28. V.A. Kostelecký, M. Mewes, Phys. Rev. Lett. 66, 056005 (2002)

    ADS  Google Scholar 

  29. V.A. Kostelecký, M. Mewes, Phys. Rev. Lett. 97, 140401 (2006)

    Article  ADS  PubMed  Google Scholar 

  30. F.E.P. Santos, M.M. Ferreira, Symmetry 10, 302 (2018)

  31. F.A. Barone, F.E. Barone, Phys. Rev. D 89, 065020 (2014)

    Article  ADS  Google Scholar 

  32. G.T. Camilo, F.A. Barone, F.E. Barone, Phys. Rev. D 87, 025011 (2013)

    Article  ADS  Google Scholar 

  33. H.L. Oliveira, L.H.C. Borges, F.E. Barone, F.A. Barone, Eur. Phys. J. C 81, 558 (2021)

    Article  ADS  CAS  Google Scholar 

  34. K.A. Milton, The Casimir Effect (Physical Manifestations of Zero-Point Energy, World Scientific, Singapore, 2001)

  35. M. Bordag, U. Mohideen, V.M. Mostepanenko, Phys. Rep. 353, 1 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  36. K.A. Milton, J. Phys. A Math. Gen. 37, 63916406 (2004)

    Article  Google Scholar 

  37. M. Bordag, K. Kirsten, D. Vassilevich, Phys. Rev. D 59, 085011 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  38. N. Graham, R.L. Jaffe, V. Khemani, M. Quandt, M. Scandurra, H. Weigel, Nucl. Phys. B 645, 49 (2002)

    Article  ADS  Google Scholar 

  39. N. Graham, R.L. Jaffe, V. Khemani, M. Quandt, M. Scandurra, H. Weigel, Phys. Lett. B 572, 196 (2003)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  40. P. Sundberg, R.L. Jaffe, Ann. Phys. 309, 442 (2004)

    Article  ADS  CAS  Google Scholar 

  41. R.M. Cavalcanti. [arXiv:hep-th/0201150]

  42. F.A. Barone, F.E. Barone, Eur. Phys. J. C 74, 3113 (2014)

    Article  Google Scholar 

  43. F.A. Barone, A.A. Nogueira, Eur. Phys. J. C 75, 339 (2015)

    Article  ADS  Google Scholar 

  44. F.A. Barone, A.A. Nogueira, Int. J. Mod. Phys. Conf. Ser. 41, 1660134 (2016)

    Article  Google Scholar 

  45. M. Blazhyevska, J. Phys. Stud. 16, 3001 (2012)

    Article  MathSciNet  Google Scholar 

  46. L.H.C. Borges, A.A. Nogueira, E.H. Rodrigues, F.A. Barone, Eur. Phys. J. C 80, 1082 (2020)

    Article  ADS  CAS  Google Scholar 

  47. L.H.C. Borges, F.A. Barone, Phys. Lett. B 824, 136759 (2022)

    Article  CAS  Google Scholar 

  48. L.H.C. Borges, F.E. Barone, C.C.H. Ribeiro, H.L. Oliveira, R.L. Fernandes, F.A. Barone, Eur. Phys. J. C 80, 238 (2020)

    Article  ADS  CAS  Google Scholar 

  49. L.H.C. Borges, F.A. Barone, H.L. Oliveira, Phys. Rev. D 105, 025008 (2022)

    Article  ADS  CAS  Google Scholar 

  50. Q.G. Bailey , V. Alan Kostelecký, Phys. Rev. D 70, 076006 (2004)

  51. H.B.G. Casimir, Indagat. Math. 10, 261 (1948)

    Google Scholar 

  52. H.B.G. Casimir, Kon. Ned. Akad. Wetensch. Proc. 51, 793 (1948)

    Google Scholar 

  53. H.B.G. Casimir, Front. Phys. 65, 342 (1987)

    Google Scholar 

  54. H.B.G. Casimir, Kon. Ned. Akad. Wetensch. Proc. 100N3-4, 61 (1997)

  55. M.J. Sparnaay, Physica (Amsterdam) 24, 751 (1958)

    Article  ADS  Google Scholar 

  56. M. Frank, I. Turan, Phys. Rev. D 74, 033016 (2006)

    Article  ADS  Google Scholar 

  57. O.G. Kharlanov, V.C. Zhukovsky, Phys. Rev. D 81, 025015 (2010)

    Article  ADS  Google Scholar 

  58. M.B. Cruz, E.R. Bezerra de Mello, A.Y. Petrov, Phys. Rev. D 96, 045019 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  59. M.B. Cruz, E.R. Bezerra de Mello, A.Y. Petrov, Mod. Phys. Lett. A 33, 1850115 (2018)

    Article  ADS  Google Scholar 

  60. A.F. Santos, F.C. Khanna, Phys. Lett. B 762, 283 (2016)

    Article  ADS  CAS  Google Scholar 

  61. L.M. Silva, H. Belich, J.A. Helayel-Neto, arXiv:1605.02388 (2016)

  62. A. Martín-Ruiz, C.A. Escobar, Phys. Rev. D 94, 076010 (2016)

    Article  ADS  Google Scholar 

  63. D.R. da Silva, E.R. Bezerra de Mello, arXiv:2006.12924 (2020)

  64. A. Martín-Ruiz, C.A. Escobar, A.M. Escobar-Ruiz, O.J. Franca, Phys. Rev. D 102, 015027 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  65. A. Mojavezi, R. Moazzemi, Mohammad Ebrahim Zomorrodian. Nucl. Phys. B 941, 145–157 (2019)

    Article  ADS  CAS  Google Scholar 

  66. M.B. Cruz, E.R. Bezerra de Mello, A.Y. Petrov, Phys. Rev. D 99, 085012 (2019)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  67. C.A. Escobar, L. Medel, A. Martín-Ruiz, Phys. Rev. D 101, 095011 (2020)

  68. A. Erdas, arXiv:2005.07830 (2020)

  69. M.A. Valuyan, Mod. Phys. Lett. A 35, 2050149 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  70. M.B. Cruz, E.R. Bezerra de Mello, H.F. Santana Mota, Phys. Rev. D 102, 045006 (2020)

  71. M. Blasone, G. Lambiase, L. Petruzziello, A. Stabile, Eur. Phys. J. C 78, 976 (2018)

    Article  ADS  Google Scholar 

  72. R.A. Dantas, H.F. Santana Mota, E.R. Bezerra de Mello, Universe 9, 241 (2023)

  73. A. Rohim, A.S. Adam A. Romadani, arXiv:2307.04448v1 [hep-th] (2023)

  74. M.C. Araújo, J. Furtado, R.V. Maluf, arXiv:2302.08836v1 [hep-th] (2023)

  75. E.R. Bezerra de Mello, M.B. Cruz, Int. J. Mod. Phys. A 38, 2350062 (2023)

    Article  ADS  CAS  Google Scholar 

  76. A. Martín-Ruiz, C.A. Escobar, Phys. Rev. D 95, 036011 (2017)

    Article  ADS  Google Scholar 

  77. L.H.C. Borges, F.A. Barone, Eur. Phys. J. C 77, 693 (2017)

    Article  ADS  Google Scholar 

  78. L.H.C. Borges, F.A. Barone, Braz. J. Phys. 50, 647–657 (2020)

    Article  ADS  Google Scholar 

  79. V.A. Kostelecký, M. Mewes, Phys. Rev. D 88, 096006 (2013)

    Article  ADS  Google Scholar 

  80. V.A. Kostelecký, M. Mewes, Phys. Rev. D 80, 015020 (2009)

    Article  ADS  Google Scholar 

  81. V. Alan Kostelecký, Z. Li, Phys. Rev. D 99, 056016 (2019)

  82. L.H.C. Borges, A.F. Ferrari, F.A. Barone, Nucl. Phys. B 954, 114974 (2020)

    Article  CAS  Google Scholar 

  83. L.H.C. Borges, A.F. Ferrari, Nucl. Phys. B 980, 115829 (2022)

    Article  CAS  Google Scholar 

  84. M. Bordag, D. Robaschik, E. Wieczorek, Quantum field theoretic treatment of the casimir effect. Ann. Phys. 165, 192–213 (1985)

    Article  ADS  MathSciNet  CAS  Google Scholar 

  85. G.B. Arfken , H.J. Weber, Mathematical Methods for Physicists, Academic Press (1995)

  86. C.G. Shao, Y.J. Tan, W.H. Tan, S.Q. Yang, J. Luo, M.E. Tobar, Phys. Rev. D 91, 102007 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

D. M. Soares. thanks to Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES) for financial support.

Funding

The Funding was provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Grant No. 88887.804100/2023-00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Soares.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Appendices

Appendices

Appendix 1: Integrals (24)-(26)

In this appendix, we provide some details on the calculation of the integrals (24), (25), and (26). For this task, we employ the well-known \(i\varepsilon \)-prescription to shift the poles away from the real axis in the complex plane of \(p^{3}\). We can write

$$\begin{aligned} \int \frac{\textrm{d}p^{3}}{\left( 2\pi \right) }\frac{e^{ip^{3}(x^{3}-y^{3})}}{p^{2} }=-\int \frac{\textrm{d}p^{3}}{\left( 2\pi \right) }\frac{e^{ip^{3}\left( x^{3} -y^{3}\right) }}{\left( p^{3}\right) ^{2}-\Gamma ^{2}-i\varepsilon }\ , \end{aligned}$$

with the limit \(\varepsilon \rightarrow 0\) implicitly assumed. For \(x^{3} -y^{3}>0\), we close the integration contour (infinite semicircle) in the upper half-plane, enclosing the simple pole at \(\Gamma +i\varepsilon \). For \(x^{3}-y^{3}<0\), we choose the integration contour in the lower half-plane, enclosing the simple pole at \(-\Gamma -i\varepsilon \). Calculating the residue of the integrand at these poles and adding these contributions using the residue theorem, we obtain the result (24).

For the integrals (25) and (26), the same procedure is followed. The only distinction is that these integrals have double and triple poles, respectively, which impacts the calculation of the residues.

Appendix 2: Propagator

In this appendix, we give some additional technical details of how the propagator in Eq. (37) was obtained. We start by substituting (31) and (34) in (36), what leads to

$$\begin{aligned} {\bar{D}}_{\mu \nu }\left( x,y\right)= & {} \frac{i}{2}\int \textrm{d}^{3}\omega _{\parallel } \ \int \textrm{d}^{3}z_{\parallel }\int \frac{\textrm{d}^{3}p_{\parallel }}{\left( 2\pi \right) ^{3}}\int \frac{\textrm{d}^{3}k_{\parallel }}{\left( 2\pi \right) ^{3}}\int \frac{\textrm{d}^{3}q_{\parallel }}{\left( 2\pi \right) ^{3}} \ e^{-ip_{\parallel }\cdot \left( \omega _{\parallel }-x_{\parallel }\right) } \ e^{-ik_{\parallel }\cdot \left( z_{\parallel }-y_{\parallel }\right) } \ e^{-iq_{\parallel }\cdot \left( \omega _{\parallel }-z_{\parallel }\right) }\nonumber \\{} & {} \times \Biggl \{\epsilon _{3 \ \ \mu }^{\ \alpha \gamma } \ p_{\parallel \gamma }\Biggl [-1+\frac{1}{2}\Biggl (\frac{3\left[ i\Gamma \mid x^{3}-a\mid - 1\right] }{p_{\parallel }^{2}}+\mid x^{3} -a\mid ^{2}\Biggr )\nonumber \\{} & {} \times \Biggl (\left[ \left( k_{AF}\right) ^{3}\right] ^{2}+\frac{\left[ \left( k_{AF}\right) _{\parallel }\cdot p_{\parallel }\right] ^{2}}{p_{\parallel }^{2}}\Biggr ) +\frac{\left[ i\Gamma \mid x^{3}-a\mid - 1\right] }{p_{\parallel }^{2}}\Biggl (i\left( k_{AF}\right) ^{3}\left( x^{3}-a\right) \left[ \left( k_{AF}\right) _{\parallel }\cdot p_{\parallel }\right] -2\left( k_{AF}^{2}\right) _{\parallel }\Biggr )\Biggr ]\nonumber \\{} & {} +\frac{\left[ i\Gamma \mid x^{3}-a\mid - 1\right] }{p_{\parallel }^{2}} \Biggl [2\left( k_{AF}\right) _{\mu }\epsilon _{3}^{\ \alpha \gamma \rho }p_{\parallel \gamma }\left( k_{AF}\right) _{\parallel \rho }+i\eta _{\mu 3}\left( \left( k_{AF}\right) _{\parallel }^{\alpha }p_{\parallel }^{2}-p_{\parallel }^{\alpha }\left[ \left( k_{AF}\right) _{\parallel }\cdot p_{\parallel }\right] \right) \nonumber \\{} & {} +i\left( k_{AF}\right) ^{3}\left( \eta _{\parallel \mu }^{\alpha }p_{\parallel }^{2}-p_{\parallel }^{\alpha }p_{\parallel \mu }\right) \Biggr ] +\Biggl [\left( k_{AF}\right) _{\parallel }^{\alpha }p_{\parallel \mu }-\eta _{\parallel \mu }^{\alpha }\left[ \left( k_{AF}\right) _{\parallel }\cdot p_{\parallel }\right] \Biggr ]\left( x^{3}-a\right) \Biggr \}\nonumber \\{} & {} \times \Biggl \{\epsilon _{3 \ \ \nu }^{\ \theta \lambda } \ k_{\parallel \lambda }\Biggl [-1+\frac{1}{2}\Biggl (\frac{3\left[ i\Gamma '\mid y^{3}-a\mid - 1\right] }{k_{\parallel }^{2}}+\mid y^{3} -a\mid ^{2}\Biggr )\nonumber \\{} & {} \times \Biggl (\left[ \left( k_{AF}\right) ^{3}\right] ^{2}+\frac{\left[ \left( k_{AF}\right) _{\parallel }\cdot k_{\parallel }\right] ^{2}}{k_{\parallel }^{2}}\Biggr ) +\frac{\left[ i\Gamma '\mid y^{3}-a\mid - 1\right] }{k_{\parallel }^{2}}\Biggl (i\left( k_{AF}\right) ^{3}\left( y^{3}-a\right) \left[ \left( k_{AF}\right) _{\parallel }\cdot k_{\parallel }\right] -2\left( k_{AF}^{2}\right) _{\parallel }\Biggr )\Biggr ]\nonumber \\{} & {} +\frac{\left[ i\Gamma '\mid y^{3}-a\mid - 1\right] }{k_{\parallel }^{2}} \Biggl [2\left( k_{AF}\right) _{\nu }\epsilon _{3}^{\ \theta \lambda \phi }k_{\parallel \lambda }\left( k_{AF}\right) _{\parallel \phi }+i\eta _{\nu 3}\left( \left( k_{AF}\right) _{\parallel }^{\theta }k_{\parallel }^{2}-k_{\parallel }^{\theta }\left[ \left( k_{AF}\right) _{\parallel }\cdot k_{\parallel }\right] \right) \nonumber \\{} & {} +i\left( k_{AF}\right) ^{3}\left( \eta _{\parallel \nu }^{\theta }k_{\parallel }^{2}-k_{\parallel }^{\theta }k_{\parallel \nu }\right) \Biggr ] +\Biggl [\left( k_{AF}\right) _{\parallel }^{\theta }k_{\parallel \nu }-\eta _{\parallel \nu }^{\theta }\left[ \left( k_{AF}\right) _{\parallel }\cdot k_{\parallel }\right] \Biggr ]\left( y^{3}-a\right) \Biggr \}\nonumber \\{} & {} \times \Biggl \{\Biggl [1+\frac{\left[ \left( k_{AF}\right) _{\parallel }\cdot q_{\parallel }\right] ^{2}}{2 q_{\parallel }^{4}}-\frac{\left[ \left( k_{AF}\right) ^{3}\right] ^{2}}{2 q_{\parallel }^{2}}\Biggr ]\eta _{\parallel \alpha \theta }-\frac{\left[ \left( k_{AF}\right) ^{3}\right] ^{2}}{q_{\parallel }^{4}}q_{\parallel \alpha }q_{\parallel \theta } \nonumber \\{} & {} +2\frac{\left( k_{AF}\right) _{\parallel \alpha }\left( k_{AF}\right) _{\parallel \theta }}{q_{\parallel }^{2}} -2\frac{\left[ \left( k_{AF}\right) _{\parallel }\cdot q_{\parallel }\right] }{q_{\parallel }^{4}}\left[ q_{\parallel \alpha }\left( k_{AF}\right) _{\parallel \theta }+\left( k_{AF}\right) _{\parallel \alpha }q_{\parallel \theta }\right] \nonumber \\{} & {} +\frac{i}{q_{\parallel }^{2}}\left( k_{AF}\right) ^{3}\epsilon _{\alpha \theta \tau 3}q_{\parallel }^{\tau }\Biggr \}\frac{e^{i\Gamma \mid x^{3}-a\mid } \ e^{i\Gamma '\mid y^{3}-a\mid }}{\Gamma \ \Gamma ' \ \Gamma ''} \ , \nonumber \end{aligned}$$

where \(\Gamma =\sqrt{p_{\parallel }^{2}}\), \(\Gamma '=\sqrt{k_{\parallel }^{2}}\) and \(\Gamma ''=\sqrt{q_{\parallel }^{2}}\).

Using the fact that

$$\begin{aligned} \int \frac{\textrm{d}^{3}\omega _{\parallel }}{\left( 2\pi \right) ^{3}} \ e^{-i\left( p_{\parallel }+q_{\parallel }\right) \cdot \omega _{\parallel }}=\delta ^{3}\left( p_{\parallel }+q_{\parallel }\right) \ , \ \ \int \frac{\textrm{d}^{3}z_{\parallel }}{\left( 2\pi \right) ^{3}} \ e^{-i\left( k_{\parallel }-q_{\parallel }\right) \cdot z_{\parallel }}=\delta ^{3}\left( k_{\parallel }-q_{\parallel }\right) \ , \end{aligned}$$

we perform the integrals \(\textrm{d}^{3}k_{\parallel }\) and \(\textrm{d}^{3}p_{\parallel }\). After, we carry out some straightforward manipulations obtaining the propagator as in Eq. (37).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soares, D.M., Borges, L.H.C., Dallabona, G. et al. Material boundaries in Carroll–Field–Jackiw Lorentz-violating electrodynamics. Eur. Phys. J. Plus 139, 152 (2024). https://doi.org/10.1140/epjp/s13360-024-04970-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04970-1

Navigation