Skip to main content
Log in

A novel low-latency ALU in the one-dimensional clock scheme in QCA nanotechnology

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Quantum-Dot Cellular Automata (QCA) is a candidate alternative technology for CMOS technology in VLSI circuits in the post-transistor era. QCA can be implemented in molecular and nanoscale structures. In VLSI circuits, the Arithmetic and Logic Unit (ALU) is one of the most critical units, which is an optimal design with low latency is essential for better processing speed. In this paper, an ALU is designed based on the needs of the one-dimensional clock. The proposed ALU has only 1.5 clock cycles latency, supports 12 instructions, and uses 443 cells in three layers. In addition, all inputs and outputs are in the same layer to make connecting the proposed ALU to other blocks simpler. To achieve this latency and the one-dimensional clock capability, AND, OR, XOR gates are fully redesigned to work in the one-dimensional clock structure. The one-dimensional clock enables the design of the clock bed and QCABED separately. Besides the proposed ALU in this paper, design rules are also proposed for one-dimensional clock circuit designing. Proposed designs are confirmed by QCADesigner, a well-known QCA layout design, and verification tool. QCADesigner-E was used for power estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available from the corresponding author, upon reasonable request.]

References

  1. U. Garlando, M. Walter, R. Wille, F. Riente, F.S. Torres, R. Drechsler, ToPoliNano and fiction: design tools for field-coupled nanocomputing. Proc. Euromicro Conf. Digit. Syst. Des. DSD (2020). https://doi.org/10.1109/DSD51259.2020.00071

    Article  Google Scholar 

  2. C.S. Lent, P.D. Tougaw, A device architecture for computing with quantum dots. Proc. IEEE 85(4), 541–557 (1997). https://doi.org/10.1109/5.573740

    Article  CAS  Google Scholar 

  3. L. Wang, G. Xie, A novel XOR/XNOR structure for modular design of QCA circuits. IEEE Trans. Circuits Syst. II Express Briefs 67(12), 3327–3331 (2020). https://doi.org/10.1109/TCSII.2020.2989496

    Article  Google Scholar 

  4. M. Graziano, R. Wang, M.R. Roch, Y. Ardesi, F. Riente, G. Piccinini, Characterization of a bis-ferrocene molecular QCA wire on a non-ideal gold surface. Micro Nano Lett. 14(1), 22–27 (2019). https://doi.org/10.1049/mnl.2018.5201

    Article  CAS  Google Scholar 

  5. M.T. Niemier, P.M. Kogge, Logic in wire: using quantum dots to implement a microprocessor. Proc. IEEE Gt. Lakes Symp. VLSI (1999). https://doi.org/10.1109/glsv.1999.757390

    Article  Google Scholar 

  6. V.C. Teja, S. Polisetti, S. Kasavajjala, QCA based multiplexing of 16 arithmetic and logical subsystems-a paradigm for nano computing. in 3rd IEEE International Conference Nano/Micro Engineering Molecular Systems NEMS, pp. 758–763 (2008) https://doi.org/10.1109/NEMS.2008.4484438.

  7. B. Ghosh, A. Kumar, A.K. Salimath, A simple arithmetic logic unit (12 ALU) design using quantum dot cellular automata. Adv. Sci. Focus 1(4), 279–284 (2014). https://doi.org/10.1166/asfo.2013.1053

    Article  Google Scholar 

  8. R. Chakrabarty, D.R. Chowdhury, S. Das, S. Ghosh, Implementation of 1 bit processor using quantum dot cellular automata. in 2015 International Conference Working Computer Communication IEMCON 2015, (2015). doi: https://doi.org/10.1109/IEMCON.2015.7344529.

  9. T.N. Sasamal, A.K. Singh, A. Mohan, Efficient design of reversible alu in quantum-dot cellular automata. Optik (Stuttg) 127(15), 6172–6182 (2016). https://doi.org/10.1016/j.ijleo.2016.04.086

    Article  ADS  Google Scholar 

  10. M. Rahimpour-Gadim, N. Jafari-Navimipour, A new three-level fault tolerance arithmetic and logic unit based on quantum dot cellular automata. Microsyst. Technol. 24(2), 1295–1305 (2017). https://doi.org/10.1007/s00542-017-3502-x

    Article  CAS  Google Scholar 

  11. S. Babaie, A. Sadoghifar, A.N. Bahar, Design of an efficient multilayer arithmetic logic unit in quantum-dot cellular automata (QCA). IEEE Trans. Circuits Syst. II Express Briefs 66(6), 963–967 (2019). https://doi.org/10.1109/TCSII.2018.2873797

    Article  Google Scholar 

  12. N.K. Mandai, R. Chakrabarty, Complementary dual-output universal gate in quantum dot cellular automata. in 2017 8th Annual Industrial Automation and Electromechanical Engineering Conference (IEMECON), pp. 321–323 (2017). https://doi.org/10.1109/IEMECON.2017.8079615.

  13. S. Rani, T.N. Sasamal, Design of QCA circuits using new 1D clocking scheme. in 2nd International Confernce Telecommunication Networks, TEL-NET 2017, vol. 2018, pp. 1–6 (2018). https://doi.org/10.1109/TEL-NET.2017.8343540.

  14. M. Goswami, A. Mondal, M.H. Mahalat, B. Sen, B.K. Sikdar, An efficient clocking scheme for quantum-dot cellular automata. Int. J. Electron. Lett. 8(1), 83–96 (2020). https://doi.org/10.1080/21681724.2019.1570551

    Article  Google Scholar 

  15. A.N. Bahar, S. Waheed, Design and implementation of an efficient single layer five input majority voter gate in quantum-dot cellular automata. Springerplus 5, 636 (2016). https://doi.org/10.1186/s40064-016-2220-7

    Article  PubMed  PubMed Central  Google Scholar 

  16. M.M. Abutaleb, Utilizing charge reconfigurations of quantum-dot cells in building blocks to design nanoelectronic adder circuits. Comput. Electr. Eng. 86, 106712 (2020). https://doi.org/10.1016/j.compeleceng.2020.106712

    Article  Google Scholar 

  17. D.K. Seo et al., QCA-based secure RAM cell structure using logic transformation and cell interaction with signal reliability and energy dissipation in quantum computing. Appl. Sci. 13, 9998 (2023)

    Article  CAS  Google Scholar 

  18. G. Cocorullo, P. Corsonello, F. Frustaci, S. Perri, Design of efficient BCD adders in quantum-dot cellular automata. IEEE Trans. Circuits Syst. II Express Briefs 64(5), 575–579 (2017). https://doi.org/10.1109/TCSII.2016.2580901

    Article  Google Scholar 

  19. P. Kumar, S. Singh, Optimization of the area efficiency and robustness of a QCA-based reversible full adder. J. Comput. Electron. 18(4), 1478–1489 (2019). https://doi.org/10.1007/s10825-019-01369-5

    Article  CAS  Google Scholar 

  20. K. Walus, T.J. Dysart, G.A. Jullien, R.A. Budiman, QCADesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3(1), 26–31 (2004). https://doi.org/10.1109/TNANO.2003.820815

    Article  ADS  Google Scholar 

  21. M. Poorhosseini, A.R. Hejazi, A fault-tolerant and efficient XOR structure for modular design of complex QCA circuits. J. Circuits Syst. Comput. (2018). https://doi.org/10.1142/S0218126618501153

    Article  Google Scholar 

  22. M. Berarzadeh, S. Mohammadyan, K. Navi, N. Bagherzadeh, A novel low power exclusive-OR via cell level-based design function in quantum cellular automata. J. Comput. Electron. 16(3), 875–882 (2017). https://doi.org/10.1007/s10825-017-0986-7

    Article  Google Scholar 

  23. F. Ahmad, G.M. Bhat, H. Khademolhosseini, S. Azimi, S. Angizi, K. Navi, Towards single layer quantum-dot cellular automata adders based on explicit interaction of cells. J. Comput. Sci. 16(March), 8–15 (2016). https://doi.org/10.1016/j.jocs.2016.02.005

    Article  MathSciNet  Google Scholar 

  24. I. Gassoumi, L. Touil, B. Ouni, A. Mtibaa, An ultra-low power parity generator circuit based on QCA technology. J. Electr. Comput. Eng. (2019). https://doi.org/10.1155/2019/1675169

    Article  Google Scholar 

  25. S.K. Lakshmi, Design and analysis of adders using nanotechnology based quantum dot cellular automata. J. Comput. Sci. 7(7), 1072–1079 (2011). https://doi.org/10.3844/jcssp.2011.1072.1079

    Article  Google Scholar 

  26. D. Ajitha, K.V. Ramanaiah, V. Sumalatha, An efficient design of XOR gate and its applications using QCA, i-manager’s. J. Electron. Eng. 5(3), 22–29 (2015). https://doi.org/10.26634/jele.5.3.3394

    Article  Google Scholar 

  27. S.R. Kassa, R.K. Nagaria, A novel design of quantum dot cellular automata 5-input majority gate with some physical proofs. J. Comput. Electron. 15(1), 324–334 (2016). https://doi.org/10.1007/s10825-015-0757-2

    Article  Google Scholar 

  28. S. Erniyazov, J.C. Jeon, Carry save adder and carry look ahead adder using inverter chain based coplanar QCA full adder for low energy dissipation. Microelectron. Eng. (2019). https://doi.org/10.1016/j.mee.2019.03.015

    Article  Google Scholar 

  29. A.T. Vanaraj, M. Raj, L. Gopalakrishnan, Energy-efficient coplanar adder and subtractor in QCA, in Proceedings of 3rd International Conference Smart System Inven Technology ICSSIT 2020, no. Icssit, pp. 539–544 (2020). https://doi.org/10.1109/ICSSIT48917.2020.9214274.

  30. S. Santra, U. Roy, Design and implementation of quantum cellular automata based novel adder circuits. World Acad. Sci. Eng. Technol. Int. J. Comput. Electr. Autom. Control Inf. Eng., 8, pp. 178–183 (2014). 10.5281/zenodo.1091118.

  31. M.G. Waje, P.K. Dakhole, Design and implementation of 4-bit arithmetic logic unit using quantum dot cellular automata. in Proceedings of 2013 3rd IEEE International Advance Computing Conference IACC 2013, pp. 1022–1029 (2013). https://doi.org/10.1109/IAdCC.2013.6514367.

  32. K. Pandiammal, D. Meganathan, Design of 8 bit reconfigurable ALU using quantum dot cellular automata. in 2018 IEEE 13th Nanotechnology Materials and Devices Conference NMDC 2018, pp. 1–4 (2019). https://doi.org/10.1109/NMDC.2018.8605892.

  33. S. Srivastava, A. Asthana, S. Bhanja, S. Sarkar, QCAPro: an error-power estimation tool for QCA circuit design, in 2011 IEEE International Symposium of Circuits and Systems (ISCAS), pp. 2377–2380 (2011). https://doi.org/10.1109/ISCAS.2011.5938081.

  34. F.S. Torres, R. Wille, P. Niemann, R. Drechsler, An energy-aware model for the logic synthesis of quantum-dot cellular automata. IEEE Trans Comput. Des. Integr. Circuits Syst. 37(12), 3031–3041 (2018). https://doi.org/10.1109/TCAD.2018.2789782

    Article  Google Scholar 

  35. M. Patidar, N. Gupta, An efficient design of edge-triggered synchronous memory element using quantum dot cellular automata with optimized energy dissipation. J. Comput. Electron. 19(2), 529–542 (2020). https://doi.org/10.1007/s10825-020-01457-x

    Article  Google Scholar 

  36. M. Abdullah-Al-Shafi, A.N. Bahar, An architecture of 2-dimensional 4-dot 2-electron QCA full adder and subtractor with energy dissipation study. Act. Passive. Electron. Components (2018). https://doi.org/10.1155/2018/5062960

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Milad Ebrahimy was contributed to conceptualization, methodology, software, validation, formal analysis, investigation, resources, writing—original draft, visualization. Mohammad Gholami was contributed to conceptualization, methodology, investigation, resources, writing—review and editing, supervision. Habib Adarang was contributed to conceptualization, methodology, investigation, writing—review and editing, supervision. Reza Yousefi was contributed to conceptualization, methodology, investigation, writing—review and editing, supervision.

Corresponding author

Correspondence to Mohammad Gholami.

Ethics declarations

Competing interests

Not applicable.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimy, M., Gholami, M., Adarang, H. et al. A novel low-latency ALU in the one-dimensional clock scheme in QCA nanotechnology. Eur. Phys. J. Plus 139, 115 (2024). https://doi.org/10.1140/epjp/s13360-024-04901-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04901-0

Navigation