Skip to main content
Log in

Probing isoscalar giant monopole resonance in axially and triaxially deformed zirconium isotopes

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Numerical calculations of the isoscalar giant monopole resonance (ISGMR) strength in even-even Zr isotopes are presented using the quasiparticle finite amplitude method based on the deformed relativistic Hartree–Bogoliubov theory, employing the DD-PCX and DD-PC1 effective interactions. A satisfactory agreement with the available experimental ISGMR strength is achieved for \(^{90,92}\)Zr. Through constraint calculations in the (\(\beta\),\(\gamma\))-plan, we identify local minima corresponding to axial and triaxial shapes in the even-even Zr isotopes. A soft monopole mode observed near 15 MeV in \(^{94}\)Zr and around 13 MeV in \(^{96,98,100}\)Zr can be explained not only by the deformation-induced coupling between the ISGMR and the isoscalar giant quadrupole resonance (ISGQR) strength, but also by the influence of neutron excess. The ISGMR is best described by the DD-PCX force, having a low value of the incompressibility value of \(K_0\) = 213 MeV and of the Dirac mass ratio \(\frac{m^*}{m}\) = 0.559. Furthermore, a transition in the positions of the soft and main ISGMR due to the kind of nuclear deformation is also observed. Additionally, the transition density of the soft monopole mode indicates that the nucleons vibrate in a distinct phase near the surface region. This phenomenon, generated by quadrupole vibrations, can be also considered as a manifestation of another monopole vibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

No data associated in the manuscript

References

  1. J. Rainwater, Phys. Rev. 79, 432 (1950)

    Article  ADS  Google Scholar 

  2. A. Bohr, Mat. Fys. Medd. Dan. Vid. Selsk. 26, 14 (1952)

    Google Scholar 

  3. A. Bohr, B.R. Mottelson, Mat. Fys. Medd. Dan. Vid. Selsk. 27, 16 (1952)

    Google Scholar 

  4. P. Chomaz, N. Frascaria, Phys. Rep. 252 (1995)

  5. O. Bohigas, H.A. Weidenmuller, Annu. Rev. Nucl. Part. Sci. 38, 421 (1988)

    Article  ADS  Google Scholar 

  6. B.R. Mottelson, Nucl. Phys. A 557 (1993)

  7. V. Zelevinsky, Annu. Rev. Nucl. Part. Sci. 46 (1996)

  8. M.G. Mayer, Phys. Rev. 75, 1969 (1949)

    Article  ADS  Google Scholar 

  9. O. Haxel, J.H.D. Jensen, H.E. Suess, Phys. Rev. 75, 1766 (1949)

    Article  ADS  Google Scholar 

  10. M.G. Mayer, J.H.D. Jensen, Elementary Theory of Nuclear Shell Structure (Wiley, New York, 1955)

    Google Scholar 

  11. P. Chomaz, N. Frascaria, Phys. Rep. 252 (1995)

  12. P.F. Bortignon, A. Bracco, R.A. Broglia, Giant Resonances: Nuclear Structure at Finite Temperature (Harwood Academic Publishers, 1998)

    Google Scholar 

  13. M. Harakeh, A. Woude, Giant Resonances: Fundamental High-Frequency Modes of Nuclear Excitation (Oxford Science Publications, Oxford University Press, Oxford, 2001)

    Book  Google Scholar 

  14. B.L. Berman, S.C. Fultz, Rev. Mod. Phys. 47, 713 (1975)

    Article  ADS  Google Scholar 

  15. K. Goeke, J. Speth, Ann. Rev. Nucl. Part. Sci. 32 (1982)

  16. S. Shlomo, P.J. Siemens, Phys. Rev. C 31, 2291 (1985)

    Article  ADS  Google Scholar 

  17. T. Maruyama, Phys. Lett. B 245, 325 (1990)

    Article  ADS  Google Scholar 

  18. Y.-W. Lui et al., Phys. Rev. C 83, 044327 (2011)

    Article  ADS  Google Scholar 

  19. Y.K. Gupta et al., Phys. Rev. C 93, 044324 (2016)

    Article  ADS  Google Scholar 

  20. U. Garg, Nucl. Phys. A 649 (1999)

  21. H.L. Clark, Y.-W. Lui, D.H. Youngblood, Phys. Rev. C 63, 031301 (2001)

    Article  ADS  Google Scholar 

  22. S. Shlomo, A. I. Sanzhur, Phys. Rev. C 65 (2002)

  23. I. Poltoratska, R.W. Fearick et al., Phys. Rev. C 89, 054322 (2014)

    Article  ADS  Google Scholar 

  24. R.W. Fearick, B. Erler et al., Phys. Rev. C 97, 044325 (2018)

    Article  ADS  Google Scholar 

  25. S. Bassauer, P. von Neumann-Cosel et al., Phys. Rev. C 102, 034327 (2020)

    Article  ADS  Google Scholar 

  26. L.M. Donaldson, J. Carter et al., Phys. Rev. C 102, 064327 (2020)

    Article  ADS  Google Scholar 

  27. J. Carter, L.M. Donaldson et al., Phys. Lett. B 833, 137374 (2022)

    Article  Google Scholar 

  28. E. Lipparini, S. Stringari, Phys. Rep. 175, 103 (1989)

    Article  ADS  Google Scholar 

  29. J. Blaizot, Phys. Rep. 64, 171 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  30. T. Li, U. Garg, Y. Liu et al., Phys. Rev. Lett. 99, 162503 (2007)

    Article  ADS  Google Scholar 

  31. N.V. Giai, H. Sagawa, Nucl. Phys. A 371, 1 (1981)

    Article  ADS  Google Scholar 

  32. D.H. Youngblood, H.L. Clark, Y.-W. Lui, Phys. Rev. Lett. 82, 691 (1999)

    Article  ADS  Google Scholar 

  33. U. Garg, G. Colo, Prog. Part. Nucl. Phys. 101, 55 (2018)

    Article  ADS  Google Scholar 

  34. L. Trippa, G. Colo, E. Vigezzi, Phys. Rev. C 77, 061304 (2008)

    Article  ADS  Google Scholar 

  35. L.-G. Cao, X. Roca-Maza, G. Colo, H. Sagawa, Phys. Rev. C 92, 034308 (2015)

    Article  ADS  Google Scholar 

  36. X. Roca-Maza, M. Brenna et al., Phys. Rev. C 87, 034301 (2013)

    Article  ADS  Google Scholar 

  37. A. Klimkiewicz, N. Paar et al., Phys. Rev. C 76, 051603 (2007)

    Article  ADS  Google Scholar 

  38. A. Carbone, G. Colo et al., Phys. Rev. C 81, 041301 (2010)

    Article  ADS  Google Scholar 

  39. T. Inakura, T. Nakatsukasa, K. Yabana, Phys. Rev. C 84, 021302 (2011)

    Article  ADS  Google Scholar 

  40. X.-W. Sun, J. Chen, D.-H. Lu, Chin. Phys. C 42, 014101 (2018)

    Article  ADS  Google Scholar 

  41. J. Kvasil, V.O. Nesterenko, A. Repko, W. Kleinig, P.-G. Reinhard, Phys. Rev. C 94, 064302 (2016)

    Article  ADS  Google Scholar 

  42. J. Kvasil, V.O. Nesterenko, A. Repko, P.G. Reinhard, W. Kleinig, EPJ Web Conf. 107, 05003 (2016)

    Article  Google Scholar 

  43. G. Colo, D. Gambacurta, W. Kleinig, J. Kvasil, V.O. Nesterenko, A. Pastore, Phys. Lett. B 811, 135940 (2020)

    Article  Google Scholar 

  44. W. Bothe, W. Gentner, Z. Phys. 71, 236 (1937)

    Article  ADS  Google Scholar 

  45. G.C. Baldwin, G.S. Klaiber, Phys. Rev. 71, 3 (1947)

    Article  ADS  Google Scholar 

  46. M. Goldhaber, E. Teller, Phys. Rev. 74, 1046 (1948)

    Article  ADS  Google Scholar 

  47. J. Speth, J. Wambach, International Review of Nuclear and Particle Physics, World Scientific, J. Speth, ed., Vol. 7, (1991)

  48. T. Nakatsukasa, T. Inakura, K. Yabana, Phys. Rev. C 76, 024318 (2007)

    Article  ADS  Google Scholar 

  49. P. Ring, P. Schuck, The Nuclear Many-Body Problems (Springer, New York, 1980)

    Book  Google Scholar 

  50. J. Meng, P. Ring, Phys. Rev. Lett. 77, 3963 (1996)

    Article  ADS  Google Scholar 

  51. D. Vretenar, A.V. Afanasjev, G.A. Lalazissis, P. Ring, Phys. Rep. 409, 101 (2005)

    Article  ADS  Google Scholar 

  52. J. Meng, H. Toki, S. Zhou, S. Zhang, W. Long, L. Geng, Prog. Part. Nucl. Phys. 57, 470 (2006)

    Article  ADS  Google Scholar 

  53. X. Sun, J. Chen, D. Lu, Phys. Rev. C 98, 024607 (2018)

    Article  ADS  Google Scholar 

  54. X. Sun, J. Chen, D. Lu, Phys. Rev. C 99, 054604 (2019)

    Article  ADS  Google Scholar 

  55. X.-W. Sun, J. Chen, D.-H. Lu, Chin. Phys. C 42, 014101 (2018)

    Article  ADS  Google Scholar 

  56. H. Sasaki, K. Toshihiko, S. Ionel, Phys. Rev. C 105, 044311 (2022)

    Article  ADS  Google Scholar 

  57. X. Sun, J. Meng, Phys. Rev. C 105, 044312 (2022)

    Article  ADS  Google Scholar 

  58. D. Savran et al., Prog. Part. Nucl. Phys. 70, 210 (2013)

    Article  ADS  Google Scholar 

  59. K. Wang, M. Kortelainen, J.C. Pei, Phys. Rev. C 96, 031301(R) (2017)

    Article  ADS  Google Scholar 

  60. J.C. Pei, M. Kortelainen, Y.N. Zhang, F.R. Xu, Phys. Rev. C 90, 051304(R) (2014)

    Article  ADS  Google Scholar 

  61. T. Niksic, D. Vretenar, P. Ring, Phys. Rev. C 78, 034318 (2008)

    Article  ADS  Google Scholar 

  62. E. Yuksel, T. Marketin, N. Paar, Phys. Rev. C 99, 034318 (2019)

    Article  ADS  Google Scholar 

  63. J.G. Valatin, Phys. Rev. 122, 1012 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  64. A. Bjelcic, T. Niksic, Comput. Phys. Commun. 253, 107184 (2020)

    Article  MathSciNet  Google Scholar 

  65. M. El Adri, M. Oulne, Eur. Phys. J. Plus 135, 268 (2020)

    Article  Google Scholar 

  66. Y. El Bassem, M. Oulne, Nucl. Phys. A 987, 16 (2019)

    Article  ADS  Google Scholar 

  67. M. El Adri, M. Oulne, IJMPE 29(12), 2050089 (2020)

    Google Scholar 

  68. Y. Tian, Z.Y. Ma, P. Ring, Phys. Lett. B 676, 44 (2009)

    Article  ADS  Google Scholar 

  69. T. Nakatsukasa, T. Inakura, K. Yabana, Phys. Rev. C 76, 024318 (2007)

    Article  ADS  Google Scholar 

  70. Y.K. Gupta et al., Phys. Rev. C 97, 064323 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. El Adri.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Adri, M., El Bassem, Y., El Batoul, A. et al. Probing isoscalar giant monopole resonance in axially and triaxially deformed zirconium isotopes. Eur. Phys. J. Plus 139, 75 (2024). https://doi.org/10.1140/epjp/s13360-024-04887-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-024-04887-9

Navigation