Skip to main content
Log in

Expected sensitivity on the anomalous quartic neutral gauge couplings in \(\gamma \gamma \) collisions at the CLIC

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The non-Abelian gauge structure of the Standard Model (SM) implies the presence of multi-boson self-interactions. Precise measurements of these interactions allow testing the nature of the SM and new physics contributions arising from the beyond SM. The investigation of these interactions can be approached in a model-independent manner using an effective theory approach, which forms the main motivation of this study. In this paper, we examine the anomalous neutral quartic gauge couplings through the process \(\gamma \gamma \rightarrow Z Z\) at the Compact Linear Collider with the center-of-mass energy of \(\sqrt{s}=3\) TeV and integrated luminosity of \(\mathcal{L}=5\) \(\mathrm ab^{-1}\). The anomalous neutral quartic gauge couplings are implemented into FeynRules to generate a UFO module inserted into Madgraph to create background and signal events. These events are passed through Pythia 8 for parton showering and Delphes to include realistic detector effects. We obtain that the sensitivities on the anomalous quartic neutral gauge couplings with \(95\%\) Confidence Level are given as: \(f_{T0}/\Lambda ^{4}=[-1.06; 1.08]\times 10^{-3}\) \(\mathrm{TeV^{-4}}\), \(f_{T1}/\Lambda ^{4}=[-1.06; 1.08]\times 10^{-3}\) \(\mathrm{TeV^{-4}}\),\(f_{T2}/\Lambda ^{4}=[-1.06; 1.08]\times 10^{-3}\) \(\mathrm{TeV^{-4}}\),\(f_{T0}/\Lambda ^{4}=[-1.06; 1.08]\times 10^{-3}\) \(\mathrm{TeV^{-4}}\), \(f_{T5}/\Lambda ^{4}=[-4.08; 4.08]\times 10^{-4}\) \(\mathrm{TeV^{-4}}\) and \(f_{T8}/\Lambda ^{4}=[-1.10; 1.10]\times 10^{-4}\) \(\mathrm{TeV^{-4}}\). Our results on the anomalous quartic neutral gauge couplings are set to a more stringent sensitivity concerning the recent experimental limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: All data generated or analysed during this study are included in this article. Data will be made available on request].

References

  1. W.J. Stirling, A. Werthenbach, Eur. Phys. J. C 14, 103 (2000)

    Article  ADS  Google Scholar 

  2. G. Belanger, F. Boudjema, Phys. Lett. B 288, 201 (1992)

    Article  ADS  Google Scholar 

  3. G. Belanger, F. Boudjema, Y. Kurihara, D. Perret-Gallix, A. Semenov, Eur. Phys. J. C 13, 283 (2000)

    Article  ADS  Google Scholar 

  4. T.K. Charles, et al., [The CLIC, CLICdp collaborations], arXiv:1812.06018v3 [physics.acc-ph]

  5. M. Aicheler, et al., [The Compact Linear Collider (CLIC)-Project Implementation Plan]; Report No. CERN-2018-010-M, 2018

  6. J. de Blas, et al., The CLIC Potential for New Physics. CERN Yellow Reports: Monographs, arXiv:1812.02093 [hep-ph]

  7. P. Roloff, R. Franceschini, U. Schnoor, A. Wulzer, The Compact Linear \(e^+e^-\) Collider (CLIC): Physics Potential, Input to the European Particle Physics Strategy Update on behalf of the CLIC and CLICdp Collaborations. arXiv:1812.07986 [hep-ex]

  8. [CLIC and CLICdp Collaborations], The Compact Linear \(e^+e^-\) Collider (CLIC)-2018 Summary Report, CERN Yellow Rep. Monogr. 1802 (2018) 1-98

  9. A. Robson, P. N. Burrows, N. Catalan Lasheras, L. Linssen, M. Petric, D. Schulte, E. Sicking, S. Stapnes, W. Wuensch, [CLIC and CLICdp Collaborations], The Compact Linear \(e^+e^-\) Collider (CLIC): Accelerator and Detector, Input to the European Particle Physics Strategy Update on behalf of the CLIC and CLICdp Collaborations, arXiv:1812.07987 [physics.acc-ph]

  10. R. Franceschini, P. Roloff, U. Schnoor, A. Wulzer, The Compact Linear Collider (CLIC): Physics Potential. arXiv: 1812.07986 [hep-ex]

  11. V.I. Telnov, Nucl. Part. Phys. Proc. 273, 219 (2016)

    Article  Google Scholar 

  12. V. Ari, E. Gurkanli, M. Köksal, A. Gutiérrez-Rodríguez, M.A. Hernández-Ruíz, Nucl. Phys. B 989, 116133 (2023)

    Article  Google Scholar 

  13. A. Gutiérrez-Rodríguez, V. Ari, E. Gurkanli, M. Köksal, M.A. Hernández-Ruíz, J. Phys. G 49, 105004 (2022)

    Article  ADS  Google Scholar 

  14. A. Gutiérrez-Rodríguez, M.A. Hernández-Ruíz, E. Gurkanli, V. Ari, M. Köksal, Eur. Phys. J. C 81, 210 (2021)

    Article  ADS  Google Scholar 

  15. E. Gurkanli, V. Ari, A. Gutiérrez-Rodríguez, M.A. Hernández-Ruíz, M. Köksal, J. Phys. G 47, 095006 (2020)

    Article  Google Scholar 

  16. V. Ari, E. Gurkanli, A. Gutiérrez-Rodríguez, M.A. Hernández-Ruíz, M. Köksal, Eur. Phys. J. Plus 135, 336 (2020)

    Article  Google Scholar 

  17. C. Degrande, et al., arXiv: 1309.7890 [hep-ph]

  18. O.J.P. Eboli, M.C. Gonzalez-Garcia, J.K. Mizukoshi, Phys. Rev. D 74, 073005 (2006)

    Article  ADS  Google Scholar 

  19. S. Chatrchyan et al., CMS collaboration. Phys. Rev. D 90(3), 032008 (2014)

    Article  ADS  Google Scholar 

  20. G. Aad et al., ATLAS collaboration. Phys. Rev. Lett. 115(3), 031802 (2015)

    Article  ADS  Google Scholar 

  21. M. Aaboud et al., ATLAS collaboration. Eur. Phys. J. C 77(9), 646 (2017)

    Article  ADS  Google Scholar 

  22. A.M. Sirunyan et al., CMS collaboration. Phys. Rev. D 100(1), 012004 (2019)

    Article  ADS  Google Scholar 

  23. A. Tumasyan et al., CMS collaboration. JHEP 10, 174 (2021)

    Google Scholar 

  24. G. Aad et al., ATLAS collaboration. Phys. Rev. Lett. 113(14), 141803 (2014)

    Article  ADS  Google Scholar 

  25. M. Aaboud et al., ATLAS collaboration. Phys. Rev. D 95(3), 032001 (2017)

    Article  ADS  Google Scholar 

  26. M. Aaboud et al., ATLAS collaboration. Phys. Rev. D 96(1), 012007 (2017)

    Article  ADS  Google Scholar 

  27. A.M. Sirunyan et al., CMS collaboration. Phys. Lett. B 774, 682–705 (2017)

    Article  ADS  Google Scholar 

  28. A.M. Sirunyan et al., CMS collaboration. Phys. Rev. Lett. 120(8), 081801 (2018)

    Article  ADS  Google Scholar 

  29. A.M. Sirunyan et al., CMS collaboration. Phys. Lett. B 798, 134985 (2019)

    Article  Google Scholar 

  30. A.M. Sirunyan et al., CMS collaboration. JHEP 06, 076 (2020)

    Google Scholar 

  31. A.M. Sirunyan et al., CMS collaboration. Phys. Lett. B 809, 135710 (2020)

    Article  Google Scholar 

  32. A.M. Sirunyan et al., CMS collaboration. Phys. Lett. B 812, 135992 (2021)

    Article  Google Scholar 

  33. A.M. Sirunyan et al., CMS collaboration. Phys. Lett. B 811, 135988 (2020)

    Article  Google Scholar 

  34. A. Tumasyan et al., CMS collaboration. Phys. Rev. D 104, 072001 (2021)

    Article  ADS  Google Scholar 

  35. M. Aaboud et al., ATLAS collaboration. Phys. Rev. D 94(3), 032011 (2016)

    Article  ADS  Google Scholar 

  36. A. Gutiérrez-Rodríguez, C.G. Honorato, J. Montano, M.A. Pérez, Phys. Rev. D 89, 034003 (2014)

    Article  ADS  Google Scholar 

  37. S.C. Inan, A.V. Kisselev, JHEP 10, 121 (2021)

    Article  ADS  Google Scholar 

  38. S.C. Inan, A.V. Kisselev, Eur. Phys. J. C 81, 664 (2021)

    Article  ADS  Google Scholar 

  39. H. Amarkhail, S.C. Inan, A.V. Kisselev, arXiv:2306.03653 [hep-ph]

  40. J.-C. Yang, Y.-C. Guo, C.-X. Yue, F. Qing, Phys. Rev. D 104, 035015 (2021)

    Article  ADS  Google Scholar 

  41. C. Baldenegro, S. Fichet, G. von Gersdorff, C. Royon, JHEP 06, 142 (2017)

    Article  ADS  Google Scholar 

  42. E. Chapon, C. Royon, O. Kepka, Phys. Rev. D 81, 074003 (2010)

    Article  ADS  Google Scholar 

  43. I. Sahin, B. Sahin, Phys. Rev. D 86, 115001 (2012)

    Article  ADS  Google Scholar 

  44. A.M. Sirunyan et al., CMS collaboration. Phys. Lett. B 774, 682–705 (2017). arXiv:1708.02812 [hep-ex]

    Article  ADS  Google Scholar 

  45. O.J.P. Eboli, M.C. Gonzalez-Garcia, S.M. Lietti, Phys. Rev. D 69, 095005 (2004)

    Article  ADS  Google Scholar 

  46. A. Senol, C.O. Karadeniz, K.Y. Oyulmaz, C. Helveci, H. Denizli, Nucl. Phys. B 980, 115851 (2022)

    Article  Google Scholar 

  47. Y.-F. Dong, Y.-C. Mao, J.-C. Yang, arXiv:2304.01505 [hep-ph]

  48. G. Perez, M. Sekulla, D. Zeppenfeld, Eur. Phys. J. C 78, 759 (2018)

    Article  ADS  Google Scholar 

  49. A. Senol, H. Denizli, C. Helveci, arXiv:2303.14805 [hep-ph]

  50. S. Zhang, J.-C. Yang, Y.-C. Guo, arXiv:2302.01274 [hep-ph]

  51. J.-C. Yang, X.-Y. Han, Z.-B. Qin, T. Li, Y.-C. Guo, JHEP 09, 074 (2022)

    Article  ADS  Google Scholar 

  52. E. Gurkanli, J. Phys. G 50, 015002 (2023)

    Article  ADS  Google Scholar 

  53. Y.-C. Guo, Y.-Y. Wang, J.-C. Yang, C.-X. Yue, Chin. Phys. C 44(12), 123105 (2020)

    Article  ADS  Google Scholar 

  54. J.-C. Yang, Z.-B. Qing, X.-Y. Han, Y.-C. Guo, T. Li, JHEP 07, 053 (2022)

    ADS  Google Scholar 

  55. Y.-Y. Yu-Chen Guo, J.-C.Y. Wang, Nucl. Phys. B 961, 115222 (2020)

    Article  Google Scholar 

  56. V. Ari, E. Gurkanli, A.A. Billur, M. Köksal, Nucl. Phys. B 957, 115102 (2020)

    Article  Google Scholar 

  57. ATLAS Collaboration, arXiv:2208.12741 [hep-ex]

  58. A.M. Sirunyan et al., ATLAS collaboration. JHEP 06, 076 (2020)

    Google Scholar 

  59. O.J.P. Eboli et al., Phys. Rev. D 47, 1889 (1993)

    Article  ADS  Google Scholar 

  60. K. Cheung, Phys. Rev. D 47, 3750 (1993)

    Article  ADS  Google Scholar 

  61. G. Moortgat-Pick, et al., SLAC-PUB-1087, CERN-PH-TH-2005-036, DESY-05-059, FERMILAB-PUB-05-060-T, IPPP-04-50, KEK-2005-16, PRL-TH-05-06, SHEP-05-03, hep-ph/0507011

  62. I.F. Ginzburg, arXiv:1508.06581 [hep-ph]

  63. V.I. Telnov, Nucl. Instrum. Methods A294, 72 (1990)

    Article  ADS  Google Scholar 

  64. J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer, T. Stelzer, JHEP 06, 128 (2011)

    Article  ADS  Google Scholar 

  65. A. Alloul, N.D. Christensen, C. Degrande, C. Duhr, B. Fuks, Comput. Phys. Commun. 185, 2250 (2014)

    Article  ADS  Google Scholar 

  66. C. Degrande, C. Duhr, B. Fuks, D. Grellscheid, O. Mattelaer, T. Reiter, Comput. Phys. Commun. 183, 1201 (2012)

    Article  ADS  Google Scholar 

  67. T. Sjostrand et al., Comput. Phys. Commun. 191, 159–177 (2015). arXiv:1410.3012 [hep-ph]

    Article  ADS  Google Scholar 

  68. J. de Favereau et al., DELPHES 3. JHEP 02, 057 (2014). arXiv:1307.6346 [hep-ex]

    Article  Google Scholar 

  69. M. Vesterinen, T.R. Wyatt, Nucl. Instrum. Meth. A 602, 432 (2009). arXiv:0807.4956 [hep-ex]

    Article  ADS  Google Scholar 

  70. V.M. Abazov et al., The D0 collaboration. Phys. Rev. D 91, 072002 (2015). arXiv:1410.8052 [hep-ex]

    Article  ADS  Google Scholar 

  71. E. da Silva Almeida, O.J.P. Éboli, M.C. Gonzalez-Garcia, Phys. Rev. D 101, 113003 (2020)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

A. G. R. and M. A. H. R. thank SNII and PROFEXCE (México). The numerical calculations reported in this paper were fully performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gutiérrez-Rodríguez.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gutiérrez-Rodríguez, A., Gurkanli, E., Köksal, M. et al. Expected sensitivity on the anomalous quartic neutral gauge couplings in \(\gamma \gamma \) collisions at the CLIC. Eur. Phys. J. Plus 138, 1130 (2023). https://doi.org/10.1140/epjp/s13360-023-04779-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04779-4

Navigation