Skip to main content
Log in

Mixed bio-convection analysis on MHD Casson hybrid nanofluid flow over a spinning cone/plate embedded in a variable porosity medium: a comparative study

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The study of heat and mass transport in MHD flows through various geometries is vital for the design of heat exchangers and other devices. With this initiative, a mathematical framework has been proposed to explore the two-dimensional mixed convective, heat, and mass transport dynamics of the magneto-hydrodynamic Casson hybrid nanofluid flow comprised of \(\text{Fe}_{3} \text{O}_{4}\)/TiO across two distinct geometries, the cone and plate revolving in an upright position within a variable porosity medium. The influence of a heat source/sink, Brownian motion, thermophoresis, bio-convection of gyrotactic microorganisms, chemical reaction, and nanoparticle shape effects are substantial physical features of the investigation. The governing equations are partial differential equations that are subsequently transferred into an appropriate structure of coupled nonlinear ordinary differential equations using the requisite similarity variables. In order to compute the transformed non-dimensional governing equation and their relevant boundary conditions, the Range–Kutta fourth-order methodology is used in conjunction with the shooting procedure. With the aid of graphs and tables, the influence of non-dimensional quantities on momentum, energy, solutal, and motile microorganism profiles, along with friction drag, heat transfer rate, Sherwood, and motile density numbers, is discussed. The results showed that flow over a plate containing nanoparticles in the shape of a blade improves heat transfer rate. Also, it has been revealed that the heat and mass transmission efficiency of a revolving cone is substantially higher than that of a rotating plate. Furthermore, the present findings are compared to prior studies, which show significant agreement.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Data Availability Statement

No data associated in the manuscript.

Abbreviations

\(\Omega\) :

Angular velocity

Lb:

Bio-convection Lewis number

Pe:

Bio-convection Peclet number

\(D_{\rm{B}}\) :

Brownian motion constant

Nb:

Brownian motion parameter

\(\beta\) :

Casson parameter

\(b\) :

Chemotaxis constant

\(C\) :

Concentration

\(\alpha\) :

Cone half angle

\(\rho\) :

Density (kg m−3)

\(\varphi\) :

Dimensionless concentration

\(D_{\rm{m}}\) :

Diffusivity of microorganism

\(\chi\) :

Dimensionless motile density

\(\theta\) :

Dimensionless temperature

\(\mu\) :

Dynamic viscosity (kg m−1 s−1)

\(\sigma\) :

Electrical conductivity (S m−1)

\(\text{Ha}^{2}\) :

Hartmann number

\(Q\) :

Heat source/sink

D 1 :

, Inverse Darcy number

\(\nu\) :

Kinematic viscosity (m2 s−1)

Le:

Lewis number

B 0 :

Magnetic field (Wb m−1)

\(\gamma\) :

Microorganism buoyancy parameters

\(\omega\) :

Microorganism concentration difference parameter

\(\text{Gr}_{M}\) :

Microorganism Grashof numbers

\(M\) :

Motile density

\(\text{Bh}_{x}\) :

Motile density number

\(g\) :

Non-dimensional circumferential velocity

\(M^{2}\) :

Non-dimensional magnetic parameter

\(h\) :

Non-dimensional normal velocity

\(\eta\) :

Non-dimensional similarity variable

\(f\) :

Non-dimensional tangential velocity

\(\text{Nu}_{x}\) :

Nusselt number

\(K\) :

Permeability of porous medium

\(\varepsilon\) :

Porosity parameter

\(\Pr\) :

Prandtl number

\(r\) :

Radius of the cone

\(\tau\) :

Ratio between heat capacities of fluid and nanoparticle

\(K_{\rm{r}}\) :

Reaction rate constant

\(S\) :

Shape factor

\(\text{Sh}_{x}\) :

Sherwood number

\(C_{fy}\) :

Skin friction along circumferential velocity

\(C_{fx}\) :

Skin friction along normal velocity

\(\delta\) :

Solutal buoyancy parameters

\(\text{Gr}_{\rm{C}}\) :

Solutal Grashof numbers

\(C_{\rm{p}}\) :

Specific heat capacity (J kg−1−1)

\(W_{\rm{c}}\) :

Swimming cell speed

\(T\) :

Temperature

\(\lambda\) :

Thermal buoyancy parameter

\(\kappa\) :

Thermal conductivity (W m−1K−1)

\(\text{Gr}_{T}\) :

Thermal Grashof numbers

Nt:

Thermophoresis parameter

\(D_{T}\) :

Thermophoretic constant

\(u,v,w\) :

, Velocity components

\(\beta_{M}\) :

Volumetric coefficients of motile density expansion

\(\beta_{\rm{C}}\) :

Volumetric coefficients of solutal expansion

\(\beta_{T}\) :

Volumetric coefficients of thermal expansion (K−1)

\(\infty\) :

Ambient condition

f :

Base fluid

hnf :

Hybrid nanofluid

nf :

Nanofluid

np :

Nanoparticle

w :

Wall

BVP:

Boundary value problem

DEs:

Differential equations

HNF:

Hybrid nanofluid

MHD:

Magneto-hydrodynamics

ODEs:

Ordinary differential equations

PDEs:

Partial differential equations

References

  1. S.U. Choi, J.A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab. (ANL), Argonne, IL (United States) (1995)

  2. A. Raza, S.U. Khan, S. Farid, M.I. Khan, T.C. Sun, A. Abbasi, M.I. Khan, M.Y. Malik, Thermal activity of conventional Casson nanoparticles with ramped temperature due to an infinite vertical plate via fractional derivative approach. Case Stud. Ther. Eng. 27, 101191 (2021). https://doi.org/10.1016/j.csite.2021.101191

    Article  Google Scholar 

  3. N.M. Lisha, A.G. Vijayakumar, Analytical investigation of the heat transfer effects of non-Newtonian hybrid Nanofluid in MHD flow past an upright plate using the Caputo fractional order derivative. Symmetry 15, 399 (2023). https://doi.org/10.3390/sym15020399

    Article  ADS  Google Scholar 

  4. M. Shuaib, M. Anas, H.U. Rehman, A. Khan, I. Khan, S.M. Eldin, Volumetric thermo-convective Casson fluid flow over a nonlinear inclined extended surface. Sci. Rep. 13, 6324 (2023). https://doi.org/10.1038/s41598-023-33259-z

    Article  ADS  Google Scholar 

  5. P. Jalili, A.A. Azar, B. Jalili, D.D. Ganji, Study of nonlinear radiative heat transfer with magnetic field for non-Newtonian Casson fluid flow in a porous medium. Results Phys. 48, 106371 (2023). https://doi.org/10.1016/j.rinp.2023.106371

    Article  Google Scholar 

  6. M. Ramzan, A. Saeed, P. Kumam, Z. Ahmad, M.S. Junaid, D. Khan, Influences of Soret and Dufour numbers on mixed convective and chemically reactive Casson fluids flow towards an inclined flat plate. Heat Transf. 51, 4393–4433 (2022). https://doi.org/10.1002/htj.22505

    Article  Google Scholar 

  7. M. Hussain, U. Farooq, M. Sheremet, Non similar convective thermal transport analysis of EMHD stagnation Casson nanofluid flow subjected to particle shape factor and thermal radiations. Int. Commun. Heat Mass Transf. 137, 106230 (2022). https://doi.org/10.1016/j.icheatmasstransfer.2022.106230

    Article  Google Scholar 

  8. M. Ramzan, N. Shaheen, H.A.S. Ghazwani, K.S. Nisar, C.A. Saleel, Impact of higher-order chemical reaction with generalized Fourier and Fick law on a Maxwell nanofluid flow past a rotating cone with variable thermal conductivity. Int. J. Mod. Phys. B 37, 2350062 (2022). https://doi.org/10.1142/S0217979223500625

    Article  ADS  Google Scholar 

  9. H. Gul, M. Ramzan, H.A.S. Ghazwani, K.S. Nisar, M. Abbas, C.A. Saleel, S. Kadry, Irreversibility analysis of a convective nanofluid flow over a rotating cone in a permeable media with Cattaneo-Christov heat flux and surface-catalyzed reaction. Int. J. Mod. Phys. B (2023). https://doi.org/10.1142/S0217979223502387

    Article  Google Scholar 

  10. R. Razzaq, U. Farooq, M. Aldandani, Nonsimilar convection analysis of single and multilayer carbon nanotubes based nanofluid flow over a vertical cone in a complex porous media subjected to thermal radiations and chemical reaction. J. Magn. Magn. Mater. 572, 170583 (2023). https://doi.org/10.1016/j.jmmm.2023.170583

    Article  Google Scholar 

  11. R. Kodi, C. Ganteda, A. Dasore, M.L. Kumar, G. Laxmaiah, M.A. Hasan, S. Islam, A. Razak, Influence of MHD mixed convection flow for maxwell nanofluid through a vertical cone with porous material in the existence of variable heat conductivity and diffusion. Case. Stud. Ther. Eng. 44, 102875 (2023). https://doi.org/10.1016/j.csite.2023.102875

    Article  Google Scholar 

  12. J.R. Platt, “bioconvection patterns” in cultures of free-swimming organisms. Science 133, 1766–1767 (1961). https://doi.org/10.1126/science.133.3466.1766

    Article  ADS  Google Scholar 

  13. M. Yaseen, S.K. Rawat, N.A. Shah, M. Kumar, S.M. Eldin, Ternary hybrid nanofluid flow containing gyrotactic microorganisms over three different geometries with Cattaneo–Christov model. Mathematics 11, 1237 (2023). https://doi.org/10.3390/math11051237

    Article  Google Scholar 

  14. T. Kamran, M. Imran, M.N. Naeem, M. Raza, Bioconvection cross diffusion effects on MHD flow of nanofluids over three different geometries with melting. Comput. Model. Eng. Sci. 131, 1023–1039 (2022). https://doi.org/10.32604/cmes.2022.017391

    Article  Google Scholar 

  15. M. Ferdows, B. Alshuraiaan, N.I. Nima, Effects of non-Darcy mixed convection over a horizontal cone with different convective boundary conditions incorporating gyrotactic microorganisms on dispersion. Sci. Rep. 12, 16581 (2022). https://doi.org/10.1038/s41598-022-18549-2

    Article  ADS  Google Scholar 

  16. J. Buongiorno, Convective transport in nanofluids. (2006). https://doi.org/10.1115/1.2150834

    Article  Google Scholar 

  17. B.K. Sharma, U. Khanduri, N.K. Mishra, K.S. Mekheimer, Combined effect of thermophoresis and Brownian motion on MHD mixed convective flow over an inclined stretching surface with radiation and chemical reaction. Int. J. Mod. Phys. B (2022). https://doi.org/10.1142/S0217979223500959

    Article  Google Scholar 

  18. K. Sharma, N. Vijay, D. Bhardwaj, R. Jindal, Flow of water conveying Fe3O4 and Mn–ZnFe2O4 nanoparticles over a rotating disk: significance of thermophoresis and Brownian motion. J. Magn. Magn. Mater. 574, 170710 (2023). https://doi.org/10.1016/j.jmmm.2023.170710

    Article  Google Scholar 

  19. S.A. Shehzad, T. Hayat, M. Qasim, S. Asghar, Effects of mass transfer on MHD flow of Casson fluid with chemical reaction and suction. Braz. J. Chem. Eng. 30, 187–195 (2013). https://doi.org/10.1590/S0104-66322013000100020

    Article  Google Scholar 

  20. N.A. Shah, I. Khan, Heat transfer analysis in a second grade fluid over and oscillating vertical plate using fractional Caputo–Fabrizio derivatives. Eur. Phys. J. C 76, 362 (2016). https://doi.org/10.1140/epjc/s10052-016-4209-3

    Article  ADS  Google Scholar 

  21. T. Anwar, P. Kumam, A fractal fractional model for thermal analysis of GO−NaAlg−Gr hybrid nanofluid flow in a channel considering shape effects. Case. Stud. Ther. Eng. 31, 101828 (2022). https://doi.org/10.1016/j.csite.2022.101828

    Article  Google Scholar 

  22. M.E. Ali, N. Sandeep, Cattaneo–Christov model for radiative heat transfer of magnetohydrodynamic Casson-ferrofluid: a numerical study. Results Phys. 7, 21–30 (2017). https://doi.org/10.1016/j.rinp.2016.11.055

    Article  ADS  Google Scholar 

  23. A. Dawar, A. Saeed, P. Kumam, Magneto-hydrothermal analysis of copper and copper oxide nanoparticles between two parallel plates with Brownian motion and thermophoresis effects. Int. Commun. Heat Mass Transf. 133, 105982 (2022). https://doi.org/10.1016/j.icheatmasstransfer.2022.105982

    Article  Google Scholar 

  24. U. Farooq, M. Tahir, H. Waqas, T. Muhammad, A. Alshehri, M. Imran, Investigation of 3D flow of magnetized hybrid nanofluid with heat source/sink over a stretching sheet. Sci. Rep. 12, 12254 (2022). https://doi.org/10.1038/s41598-022-15658-w

    Article  ADS  Google Scholar 

  25. J.H. Evans, Dimensional analysis and the Buckingham Pi theorem. Am. J. Phys. 40, 1815–1822 (1972). https://doi.org/10.1119/1.1987069

    Article  ADS  Google Scholar 

  26. S. Rajput, A.K. Verma, K. Bhattacharyya, A.J. Chamkha, Unsteady nonlinear mixed convective flow of nanofluid over a wedge: Buongiorno model. Waves Random Complex Media (2021). https://doi.org/10.1080/17455030.2021.1987586

    Article  Google Scholar 

  27. A.K. Gautam, A.K. Verma, K. Bhattacharyya, S. Mukhopadhyay, A.J. Chamkha, Impacts of activation energy and binary chemical reaction on MHD flow of Williamson nanofluid in Darcy–Forchheimer porous medium: a case of expanding sheet of variable thickness. Waves Random Complex Media (2021). https://doi.org/10.1080/17455030.2021.1979274

    Article  Google Scholar 

  28. R.G. Hering, R.J. Grosh, Laminar combined convection from a rotating cone. J. Heat Transf. 85, 29–34 (1963). https://doi.org/10.1115/1.3686006

    Article  Google Scholar 

  29. B. Mallikarjuna, A.M. Rashad, A.J. Chamkha, S.H. Raju, Chemical reaction effects on MHD convective heat and mass transfer flow past a rotating vertical cone embedded in a variable porosity regime. Afr. Math. 27, 645–665 (2016). https://doi.org/10.1007/s13370-015-0372-1

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Vijaya Kumar.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lisha, N.M., Vijaya Kumar, A.G. Mixed bio-convection analysis on MHD Casson hybrid nanofluid flow over a spinning cone/plate embedded in a variable porosity medium: a comparative study. Eur. Phys. J. Plus 138, 1042 (2023). https://doi.org/10.1140/epjp/s13360-023-04650-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04650-6

Navigation