Skip to main content
Log in

Prediction and tuning of the optical energy gap and refractive index of amorphous titania-alumina thin films prepared by atomic layer deposition using adaptive neuro-fuzzy inference system model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Titania was mixed with different percentages of alumina during the preparation of an 8 nm film by atomic layer deposition. The effect of mixing on the transmittance and absorption spectra was investigated. Increasing the alumina percentage increased the transmittance and decreased the absorption of light. The films showed an indirect allowed transition with an energy gap that slightly increased with increasing alumina percentage. The refractive index was calculated using four different methods. The average value of the refractive index decreases from 2.350 for pure titania to 2.314 for titania (70%) and alumina (30%). The optical properties were estimated by using ANFIS model. To achieve the best fit, different configurations were trained using MATLAB-R2021a, and the ANFIS optimal network of training the transmittance of titania-alumina thin films was determined. Experimental measurements were compared with the ANFIS simulated outputs and it is clear that the experimental data and the ANFIS simulated results almost coincide. The major goal is to employ the ANFIS model to predict the optical properties of the underlying titania thin film at alumina concentrations, which are experimentally unmeasured. Thus, the net is reduced in the number of samples, which is important in saving effort, time, and costs, which is an urgent requirement today. The method based on machine learning presented here also works when few measurement data are available and the relationship between the parameters is nonlinear, making the use of other numerical methods, e.g., inter/extrapolation, questionable. Compatibility between practical and theoretical results provides availability for more applications in the field of material science.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The data that support the findings of this study are available from the corresponding author upon reasonable request [R.A. Mohamed; Rashaali@edu.asu.edu.eg].]

References

  1. S. Uma, M.K. Shobana, Metal oxide semiconductor gas sensors in clinical diagnosis and environmental monitoring. Sens. Actuators, A 349, 114044 (2023). https://doi.org/10.1016/j.sna.2022.114044

    Article  Google Scholar 

  2. J. Han, A. Abliz, Da. Wan, Impact of hydrogen plasma treatment on the electrical performances of ZnO thin-film transistors. Chin. J. Phys. 77, 327–334 (2022). https://doi.org/10.1016/j.cjph.2022.03.005

    Article  Google Scholar 

  3. C. Bhagya Lakshmi, S. Jeya Lakshmi, J. Mayandi, S. Anna Venus, R. Marnadu, X. Vasanth winston, M. Aslam Manthrammel, M. Shkir, Probing novel photoanodes relying on CuBiSe/metal oxides nanocomposites-based dye-sensitizing solar cells. Surf. Interfaces (2023). https://doi.org/10.1016/j.surfin.2023.102638

    Article  Google Scholar 

  4. W. Ahmad, S. Tahir, A. Ali, K. Mahmood, A novel approach to reduce both front and rear side power losses in PERC solar cells using different combinations of transparent metal oxides. Ceram. Int. 49, 2821–2828 (2023). https://doi.org/10.1016/j.ceramint.2022.09.264

    Article  Google Scholar 

  5. S.S. Shenouda, M.S.A. Hussien, B. Parditka, A. Csik, V. Takats, Z. Erdelyi, Novel amorphous Al-rich Al2O3 ultra-thin films as active photocatalysts for water treatment from some textile dyes. Ceram. Int. 46, 7922–7929 (2020). https://doi.org/10.1016/j.ceramint.2019.12.012

    Article  Google Scholar 

  6. V. Mandić, S. Kurajica, T. Očko, Development of phases in the sol-gel derived mixed-metal-oxide (Al2O3–TiO2–ZnO) functional sorbent material. Ceram. Int. 46, 29388–29401 (2020). https://doi.org/10.1016/j.ceramint.2020.05.209

    Article  Google Scholar 

  7. Z. Chen, J. Li, S. Wang, J. Zhao, J. Liu, J. Shen, C. Qi, P. Yang, Structure-property-performance relationship of transition metal doped WO3 mixed oxides for catalytic degradation of organic pollutants. Chemosphere 316, 137797 (2023). https://doi.org/10.1016/j.chemosphere.2023.137797

    Article  ADS  Google Scholar 

  8. J. Liu, S.-L. Wang, J.-L. Xuan, B.-F. Shan, H. Luo, L.-P. Deng, P. Yang, C.-Z. Qi, Preparation of tungsten–iron composite oxides and application in environmental catalysis for volatile organic compounds degradation. Tungsten 4, 38–51 (2022). https://doi.org/10.1007/s42864-021-00128-z

    Article  Google Scholar 

  9. X. Wang, J.C. Hanson, G. Liu, J.A. Rodriguez, A. Iglesias-Juez, M. Fernández-Garcı́a, The behavior of mixed-metal oxides: Physical and chemical properties of bulk Ce1-xTbxO2 and nanoparticles of Ce1-xTbxOy. J. Chem. Phys. 121, 5434 (2004). https://doi.org/10.1063/1.1781116

    Article  ADS  Google Scholar 

  10. M. Mandooie, M. Rahimi, G. Nikravesh, E. Salehi, A comprehensive review on zinc-based mixed metal oxide catalysts for dimethyl carbonate synthesis via urea alcoholysis process. J. Ind. Eng. Chem. 117, 70–84 (2023). https://doi.org/10.1016/j.jiec.2022.10.042

    Article  Google Scholar 

  11. D. Go, J. Lee, J.W. Shin, S. Lee, W. Kang, J.H. Han, J. An, Phase-gradient atomic layer deposition of TiO2 thin films by plasma-induced local crystallization. Ceram. Int. 47, 28770–28777 (2021). https://doi.org/10.1016/j.ceramint.2021.07.037

    Article  Google Scholar 

  12. M.S.A. Hussien, S.S. Shenouda, B. Parditka, A. Csík, Z. Erdélyi, Enhancement of Urbach’s energy and non-lattice oxygen content of TiO1.7 ultra-thin films for more photocatalytic activity. Ceram. Int. 46, 15236–15241 (2020). https://doi.org/10.1016/j.ceramint.2020.03.062

    Article  Google Scholar 

  13. S.K. Kim, G.J. Choi, J.H. Kim, C.S. Hwang, Growth behavior of Al-doped TiO2 thin films by atomic layer deposition. Chem. Mater. 20, 3723–3727 (2008). https://doi.org/10.1021/cm800280t

    Article  Google Scholar 

  14. M. Waleczek, J. Dendooven, P. Dyachenko, A.Y. Petrov, M. Eich, R.H. Blick, C. Detavernier, K. Nielsch, K.P. Furlan, R. Zierold, Influence of alumina addition on the optical properties and the thermal stability of titania thin films and inverse opals produced by atomic layer deposition. Nanomaterials 11, 1053 (2021). https://doi.org/10.3390/nano11041053

    Article  Google Scholar 

  15. H.A.M. Ali, R.A. Mohamed, Modeling for electrical impedance spectroscopy of (4E)-2-amino-3cyanobenzo[b]oxocin-6-one by artificial neural network. Ceram. Int. 44, 10907–10911 (2018). https://doi.org/10.1016/j.ceramint.2018.03.146

    Article  Google Scholar 

  16. A.M.A. El-Barry, R.A. Mohamed, Modeling of Photovoltaic characteristics of pyronine thin film/P-Si single. Mater. Res. Express 6, 076419–076431 (2019). https://doi.org/10.1088/2053-1591/ab0a34

    Article  ADS  Google Scholar 

  17. R.A. Mohamed, Modeling of electrical properties of nanofluids using artificial neural network. Phys. Scr. 94, 105222–105233 (2019). https://doi.org/10.1088/1402-4896/ab1939/pdf

    Article  ADS  Google Scholar 

  18. R.A. Mohamed, Prediction of AC conductivity for organic semiconductors based on artificial neural network ANN model. Mater. Res. Express 6, 085107–085121 (2019). https://doi.org/10.1088/2053-1591/ab250a

    Article  ADS  Google Scholar 

  19. H.A.M. Ali, E.F.M. El-Zaidia, R.A. Mohamed, Experimental investigation and modeling of electrical properties for phenol red thin film deposited on silicon using back propagation artificial neural network. Chin. J. Phys. 67, 602–614 (2020). https://doi.org/10.1016/j.cjph.2020.07.018

    Article  Google Scholar 

  20. R.A. Mohamed, Application of artificial neural network model for prediction of thermo–physical properties of carbon nanotubes (CNTs) containing nanofluid. J. Nanofluids 8, 199–204 (2019). https://doi.org/10.1166/JON.2019.1573

    Article  Google Scholar 

  21. J. Ganji, M. Kaboli, S.S. Tabatabaee, P. Shabani, Modeling and optimization of nano-rod plasmonic sensor by adaptive neuro fuzzy inference system (ANFIS). Opt. Quantum Electron. 53, 88 (2021). https://doi.org/10.1007/s11082-020-02675-0

    Article  Google Scholar 

  22. A. Alexandridis, E. Chondrodima, K. Moutzouris, D. Triantis, A neural network approach for the prediction of the refractive index based on experimental data. J. Mater. Sci. 47, 883–891 (2012). https://doi.org/10.1007/s10853-011-5868-y

    Article  ADS  Google Scholar 

  23. H. Alghamdi, C. Maduabuchi, A. Albaker, I. Alatawi, T.R. Alsenani, A.S. Alsafran, A. Almalaq, M. AlAqil, M.A.H. Abdelmohimen, M. Alkhedher iAlAqil, prediction model for the performance of solar photovoltaic-thermoelectric systems utilizing various semiconductors via optimal surrogate machine learning methods. Eng. Sci. Technol. Int. J. 40, 101363 (2023). https://doi.org/10.1016/j.jestch.2023.101363

    Article  Google Scholar 

  24. D. Karaboga, E. Kaya, Adaptive network based fuzzy inference system (ANFIS) training approaches: a comprehensive survey. Artif. Intell. Rev.. Intell. Rev. 52, 2263–2293 (2019). https://doi.org/10.1007/s10462-017-9610-2

    Article  Google Scholar 

  25. R.A. Mensah, J. Xiao, O. Das, L. Jiang, Q. Xu, M.O. Alhassan, Application of adaptive neuro-fuzzy inference system in flammability parameter prediction. Polymers 2, 122–138 (2020). https://doi.org/10.3390/polym12010122

    Article  Google Scholar 

  26. A.M. Shakra, R.A. Mohamed, G.B. Sakr, Experimental and theoretical study of the conduction mechanism and dielectric behavior of quaternary defect chalcopyrite CdInGaSe4 using adaptive neuro-fuzzy inference system (ANFIS) model. J. Non-Cryst. SolidsCryst. Solids 575, 121175 (2022). https://doi.org/10.1016/j.jnoncrysol.2021.121175

    Article  Google Scholar 

  27. R.A. Mohamed, Modeling of dielectric behavior of polymers nanocomposites using adaptive neuro-fuzzy inference system (ANFIS). Eur. Phys. J. Plus 137, 384 (2022). https://doi.org/10.1140/epjp/s13360-022-02518-9

    Article  Google Scholar 

  28. C.W. Wiegand, R. Faust, A. Meinhardt, R.H. Blick, R. Zierold, K. Nielsch, Understanding the growth mechanisms of multilayered systems in atomic layer deposition process. Chem. Mater. 30, 1971–1979 (2018). https://doi.org/10.1021/acs.chemmater.7b05128

    Article  Google Scholar 

  29. S.K. Kim, G.-J. Choi, C.S. Hwang, Controlling the composition of doped materials by ALD: a case study for Al-doped TiO2 films. Electrochem. Solid-State Lett.. Solid-State Lett. 11(7), G27–G29 (2008). https://doi.org/10.1149/1.2909768

    Article  Google Scholar 

  30. T. Arroval, L. Aarik, R. Rammula, J. Aarik, Growth of TixAl1−xOy films by atomic layer deposition using successive supply of metal precursors. Thin Solid Films 591, 276 (2015). https://doi.org/10.1016/j.tsf.2015.03.014

    Article  ADS  Google Scholar 

  31. A. Al-Hmouz, J. Shen, S. Member, R. Al-Hmouz, J. Yan, Modeling and simulation of an adaptive neuro-fuzzy inference system (ANFIS) for mobile learning. IEEE Trans. Learn. Technol. 5, 226–237 (2012). https://doi.org/10.1109/TLT.2011.36

    Article  Google Scholar 

  32. M. Negnevitsky, Artificial Intelligence; A Guide to Intelligent Systems, 2nd edn. (Addison-Wesley, 2005)

  33. N.F. Mott, E.A. Davies, Electronic Processes in Non-Crystalline Materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  34. S.S. Shenouda, M. Saif, E. Baradács, B. Parditka, T. Fodor, Z. Erdélyi, Optimization of the structural and optical properties of ALD grown ZnO thin films for photocatalytic applications: thickness dependence. Phys. Scr. 98, 015826 (2023). https://doi.org/10.1088/1402-4896/aca93f

    Article  ADS  Google Scholar 

  35. J. Tauc, Amorphous and Liquid Semiconductors (Plenum Press, London and New York, 1974). https://doi.org/10.1016/j.cjph.2022.05.011

    Book  Google Scholar 

  36. H. Elhosiny Ali, Y. Khairy, Tailoring structure, nonlinear/linear optical, and dielectric properties of PVA/PVP film by spinel LiMn2O4 nanoparticles. Chin. J. Phys.. J. Phys. 78, 27–43 (2022)

    Article  Google Scholar 

  37. X. Guo, H. Zheng, S.W. King, V.V. Afanas’ev, M.R. Baklanov, J.-F. de Marneffe, Y. Nishi, J.L. Shohet, Defect-induced bandgap narrowing in low-k dielectrics. Appl. Phys. Lett. 107, 082903 (2015). https://doi.org/10.1063/1.4929702

    Article  ADS  Google Scholar 

  38. J.J. Cordell, G.J. Tucker, A. Tamboli, S. Lany, Bandgap analysis and carrier localization in cation-disordered ZnGeN2. APL Mater. 10, 011112 (2022). https://doi.org/10.1063/5.0077632

    Article  ADS  Google Scholar 

  39. Lu. Jin Chen, L.L. Zheng, M. Liu, Y. Gao, K. Zhao, Structural and optical properties of Fe@C doped TiO2 thin films prepared by sol–gel method. Inorg. Chem. Commun.. Chem. Commun. 153, 110776 (2023). https://doi.org/10.1016/j.inoche.2023.110776

    Article  Google Scholar 

  40. D.A. Granada-Ramirez, J.A. Cardona-Bedoya, U. Hernandez-Rojas, A. Pulzara-Mora, M.I. Delgado-Rosero, A.A. Dur´ an-Ledezma, M. P´erez-Gonzalez ´, Y. Panecatl Bernal, S.A. Tom´ as, J.J. Alvarado-Pulido, M.L. Gomez-Herrera, J.G. Mendoza-Alvarez, Assessment of Cr doping on TiO2 thin films deposited by a wet chemical method. Ceram. Int. 49, 30347 (2023). https://doi.org/10.1016/j.ceramint.2023.06.293

    Article  Google Scholar 

  41. A.M. Bolbol, O.H. Abd-Elkader, H. Elshimy, Z.I. Zaki, S.A. Shata, M. Kamel, A.S. Radwan, N.Y. Mostafa, The effect of Zr (IV) doping on TiO2 thin film structure and optical characteristics. Results Phys. 42, 105955 (2022). https://doi.org/10.1016/j.rinp.2022.105955

    Article  Google Scholar 

  42. M. Aftab, M.Z. Butt, D. Ali, F. Bashir, T.M. Khan, Optical and electrical properties of NiO and Cu-doped NiO thin films synthesized by spray pyrolysis. Opt. Mater. 119, 111369 (2021). https://doi.org/10.1016/j.optmat.2021.111369

    Article  Google Scholar 

  43. T.S. Moss, Photoconductivity in the elements. Proc. Phys. Soc. Sect. A 64, 590–591 (1951). https://doi.org/10.1088/0370-1298/64/6/113

    Article  ADS  Google Scholar 

  44. T.S. Moss, Relations between the refractive index and energy gap of semiconductors. Phys. Status Sol. (b) 131, 415 (1985). https://doi.org/10.1016/j.infrared.2006.04.001

    Article  ADS  Google Scholar 

  45. N.M. Ravindra, V.K. Srivastava, Variation of refractive index with energy gap in semiconductors. Infrared Phys. 19, 603 (1979). https://doi.org/10.1016/j.infrared.2006.04.001

    Article  ADS  Google Scholar 

  46. P. Herve, L.K.J. Vandamme, General relation between refractive index and energy gap in semiconductors. Infared Phys. Technol. 35, 609–615 (1994). https://doi.org/10.1016/1350-4495(94)90026-4

    Article  ADS  Google Scholar 

  47. V. Kumar, J.K. Singh, Model for calculating the refractive index of different materials. Indian J. Pure Appl. Phys. 48, 571–574 (2010)

    Google Scholar 

Download references

Acknowledgements

Project no. TKP2021-NKTA-34 has been implemented with support provided by the National Research, Development, and Innovation Fund of Hungary, financed under the TKP2021-NKTA funding scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Mohamed.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shenouda, S.S., Mohamed, R.A., Baradács, E. et al. Prediction and tuning of the optical energy gap and refractive index of amorphous titania-alumina thin films prepared by atomic layer deposition using adaptive neuro-fuzzy inference system model. Eur. Phys. J. Plus 138, 1024 (2023). https://doi.org/10.1140/epjp/s13360-023-04646-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04646-2

Navigation