Skip to main content
Log in

Fermionic charges in 3D supersymmetric topological matter

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Topological phase of matter has attracted a great deal of interest. Drawing inspiration from the recent advances in this field, we model the supersymmetric extension of the Altland-Zirnbauer (AZ) periodic table classifying the topological insulators and superconductors in tenfold way. We construct the five supercharges \(\varvec{Q}_{\textbf{k}}=\hat{F}_{ \textbf{k}}.\varvec{q}_{\textbf{k}}.\hat{B}_{\textbf{k}}\) of super AZ matter describing the coupling between fermions \(\hat{F}_{\textbf{k}}\) and bosons \(\hat{B}_{\textbf{k}}\); and we analyse the induced supersymmetric 3D hamiltonians \( \varvec{H}_{\textbf{k}}.\) We also probe topological effects leading to remarkable properties like the supersymmetric gapless states living on the boundary. A discussion on super classes A, C and D and the corresponding symmetries is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability Statement

No Data associated in the manuscript.

References

  1. A. Altland, MR. Zirnbauer, Phys. Rev. B 55, 1142 (1997). arXiv:cond-mat/9602137v2

    Article  ADS  Google Scholar 

  2. C.-K. Chiu, J.C.Y. Teo, A.P. Schnyder, S. Ryu, Rev. Mod. Phys. 88, 035005 (2016)

    Article  ADS  Google Scholar 

  3. W W. A. Ludwig, Phys. Scr. 2016, 014001 (2016)

    Article  Google Scholar 

  4. K. Shiozaki, M. Sato, Phys. Rev. B 90, 165114 (2014)

    Article  ADS  Google Scholar 

  5. Y. Ando, F. Liang, Ann. Rev. Conden. Matter Phys. 6, 361–381 (2015)

    Article  ADS  Google Scholar 

  6. E.H. Saidi, O. Fassi-Fehri, M. Bousmina, J. Math. Phys. 53(7), 072304 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  7. LB Drissi, EH Saidi, M Bousmina, Omar F-F, Magnetic Skyrmions: Theory and Applications, Book chapter, Edited by Dipti Ranjan Sahu, https://doi.org/10.5772/intechopen.96927.

  8. L.B. Drissi, E.H. Saidi, M. Bousmina, Graphene, Lattice QFT and Symmetries. J. Math. Phys. 52, 022306 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  9. L.B. Drissi, E.H. Saidi, M. Bousmina, Four Dimensional Graphene. Phys. Rev. D 84, 014504 (2011)

    Article  ADS  Google Scholar 

  10. L.B. Drissi, E.H. Saidi, On Dirac Zero Modes in Hyperdiamond Model. Phys. Rev. D 84, 014509 (2011)

    Article  ADS  Google Scholar 

  11. L.B. Drissi, E.H. Saidi, M. Bousmina, Electronic properties and hidden symmetries of graphene. Nucl. Phys. B 829(3), 523–533 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  12. M.Z. Hasan, C.L. Kane, Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045 (2010)

    Article  ADS  Google Scholar 

  13. X.-G. Wen, Colloquium: Zoo of quantum-topological phases of matter. Rev. Mod. Phys. 89, 041004 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  14. M. Ragragui, L.B. Drissi, E.H. Saidi, Evidence of topological surface states. Mater. Sci. Eng. B 283, 115774 (2022)

    Article  Google Scholar 

  15. M. Ragragui, L.B. Drissi, E.H. Saidi, S. Lounis, Structural, electronic and topological properties of 3D TmBi compound. Eur. Phys. J. Plus 137, 854 (2022)

    Article  Google Scholar 

  16. B.K. Stuhl, H.-I. Lu, L.M. Aycock, D. Genkina, I.B. Spielman, Visualizing edge states with an atomic bose gas in the QH regime. Science 349, 1514 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  17. N. Goldman, J.C. Budich, P. Zoller, Topological quantum matter with ultracold gases in optical lattices. Nat. Phys. 12, 639 (2016)

    Article  Google Scholar 

  18. L. Lu, J.D. Joannopoulos, M. Soljacic, Topological photonics. Nat. Photonics 8, 821 (2014)

    Article  ADS  Google Scholar 

  19. T. Ozawa, H.M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, I. Carusotto, Topological photonics. Rev. Mod. Phys. 91, 015006 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  20. E. Witten, Fermion path integrals and topological phases. Rev. Modern Phys. 88, 035001 (2016)

    Article  ADS  Google Scholar 

  21. B. Mera, T. Ozawa. Phys. Rev. B 104, 045104 (2021)

    Article  ADS  Google Scholar 

  22. F.D.M. Haldane, Rev. Modern Phys. 89, 040502 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  23. L. Fu, C.L. Kane, E.J. Mele, Phys. Rev. Lett. 98, 106803 (2007)

    Article  ADS  Google Scholar 

  24. Z. Ringel, A. Stern, Phys. Rev. B 88, 115307 (2013)

    Article  ADS  Google Scholar 

  25. D.J. Thouless, M. Kohmoto, M.P. Nightingale, M. den Nijs, Quantized Hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405–408 (1982)

    Article  ADS  Google Scholar 

  26. K. von Klitzing, The quantized Hall effect. Rev. Mod. Phys. 58, 519–531 (1986)

    Article  ADS  Google Scholar 

  27. F.D.M. Haldane, Phys. Rev. Lett. 61, 2015 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  28. C.L. Kane, E.J. Mele, \(\text{ Z}_{2}\) topological order and the quantum spin Hall effect. Phys. Rev. Lett. 95, 146802 (2005)

    Article  ADS  Google Scholar 

  29. MJ. Lawler, Phys. Rev. B 94, 165101 (2016)

    Article  ADS  Google Scholar 

  30. G. Queralto, M. Kremer, L.J. Maczewsky, M. Heinrich, J. Mompart, V. Ahufinger, A. Szameit, Commun. Phys. 3, 49 (2020)

    Article  Google Scholar 

  31. Z. Gong, RH. Jonsson, D Malz, Supersymmetric free fermions and bosons: locality. Sym. Topol. Phys. Rev. B 105, 085423 (2022)

    Article  ADS  Google Scholar 

  32. J. Attig, K. Roychowdhury, M.J. Lawler, S. Trebst, Topological mechanics from supersymmetry. Phys. Rev. Res. 1, 032047 (2019)

    Article  Google Scholar 

  33. A. Kitaev, L. Kong, Models for gapped boundaries and domain walls. Commun. Math. Phys. 313(2), 351–373 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  34. K Roychowdhury, J Attig, S Trebst, MJ Lawler, Supersymmetry on the lattice: Geometry, Topology, and Spin Liquids, arXiv:2207.09475 [cond-mat.str-el]

  35. S. Ryu, A.P. Schnyder, A. Furusaki, A.W.W. Ludwig, New J. Phys. 12, 065010 (2010)

    Article  ADS  Google Scholar 

  36. L.B. Drissi, E.H. Saidi, J. Phys. Condens. Matter 32(36), 365704 (2020)

    Article  Google Scholar 

  37. L.B. Drissi, E.H. Saidi, Eur. Phys. J. Plus 136(68), 1–27 (2021)

    Google Scholar 

  38. L.B. Drissi, S. Lounis, E.H. Saidi, Eur. Phys. J. Plus 137(7), 796 (2022)

    Article  Google Scholar 

  39. H. Robert, LH Jonsson, K. Roychowdhury, Entanglement dualities in supersymmetry. Phys. Rev. Res. 3, 023213 (2021)

    Article  Google Scholar 

  40. A. Giveon, D. Kutasov, J. High Energy Phys. 42, 1–23 (2016)

    Google Scholar 

  41. P. Padmanabhan, F. Sugino, D. Trancanelli, Quant. Inf. and Comp. 20(1–2), 37–64 (2020). arXiv:1911.02577v2 [quant-ph]

    Google Scholar 

  42. E. Bianchi, L. Hackl, N. Yokomizo, Entanglement entropy of squeezed vacua on a lattice. Phys. Rev. D 92, 085045 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  43. Eugenio Bianchi, Lucas Hackl, Nelson Yokomizo, Linear growth of the entanglement entropy and the kolmogorov-sinai rate. J. High Energy Phys. 2018, 25 (2018)

    Article  MathSciNet  Google Scholar 

  44. G. Junker, Eur. Phys. J. Plus 135, 464 (2020)

    Article  Google Scholar 

  45. G. Junker, Symmetry 13(5), 835 (2021)

    Article  ADS  Google Scholar 

  46. N. Srinivas, A. Shukla, R.P. Malik, Int. J. Mod. Phys. A 30, 1550166 (2015)

    Article  ADS  Google Scholar 

  47. K. Roychowdhury, M.J. Lawler, A classification of magnetic frustration and metamaterials from topology. Phys. Rev. B 98, 094432 (2018)

    Article  ADS  Google Scholar 

  48. Q.-R. Xu, V.P. Flynn, A. Alase, E. Cobanera, L. Viola, G. Ortiz, Squaring the fermion: The threefold way and the fate of zero modes. Phys. Rev. B 102, 125127 (2020)

    Article  ADS  Google Scholar 

  49. R.H. Jonsson, L. Hackl, K. Roychowdhury, Entanglement dualities in supersymmetry. Phys. Rev. Res. 3, 023213 (2021)

    Article  Google Scholar 

  50. T. Grover, D.N. Sheng, A. Vishwanath, Science 344, 280 (2014)

    Article  ADS  Google Scholar 

  51. J. Attig, K. Roychowdhury, M.J. Lawler, S. Trebst, Phys. Rev. Res. 1, 032047 (2019)

    Article  Google Scholar 

  52. D. Viedma, G. Queraltó, J. Mompart, V. Ahufinger, Opt. Express 30, 23531–23543 (2022)

    Article  ADS  Google Scholar 

  53. M.A. Miri, M. Heinrich, R. El-Ganainy, D.N. Christodoulides, Supersymmetric optical structures. Phys. Rev. Lett. 110, 233902 (2013)

    Article  ADS  Google Scholar 

  54. T. Ozawa et al., Topological photonics. Rev. Mod. Phys. 91, 015006 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  55. R.M. Zirnbauer, Particle-hole symmetries in condensed matter. J. Math. Phys. 62, 021101 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  56. C. Yin, H. Jiang, L. Li, R. Lü, S. Chen, Phys. Rev. A 97, 052115 (2018)

    Article  ADS  Google Scholar 

  57. L. Lin, Y. Ke, C. Lee, Phys. Rev. B 103, 224208 (2021)

    Article  ADS  Google Scholar 

  58. A Michelangeli, G Dell’Antonio, Advances in Quantum Mechanics Contemporary Trends and Open Problems, arXiv:1705.06534 [math-ph]

  59. L.B Drissi, E.H Saidi, On the \(\mathbb{Z}_{2}\) Topological Invariant, LPHE-MS-sept-22, Under review

  60. E. Witten, Fermion path integrals and topological phases. Rev. Mod. Phys. 88, 35001 (2016)

    Article  Google Scholar 

  61. L.B Drissi, E.H Saidi, On the \(\mathbb{Z}_{2}\) Topological Invariant, preprint, LPHE-MS August 2022, Under press

  62. Z Gong and T Guaita, Topology of quantum gaussian states and operations, arXiv:2106.05044v2 [quant-ph]

  63. A.P. Schnyder, S. Ryu, A. Furusaki, A.W.W. Ludwig, Phys. Rev. B 78, 195125 (2008)

    Article  ADS  Google Scholar 

  64. Y. Boujakhrout, E.H. Saidi, R. Ahl Laamara, L.B. Drissi, J. Phys. A Math. Theor. 55(41), 415402 (2022)

    Article  Google Scholar 

  65. L.B Drissi, E.H Saidi, From orthosymplectic structure to super topological matter, LPHE-MS-july-22, Under review in Nuclear Physics (2022)

Download references

Acknowledgements

This research work is supported by the research project “Topological matter” Hassan II Academy of Sciences and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. B. Drissi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drissi, L.B., Saidi, E.H., Fassi-Fehri, O. et al. Fermionic charges in 3D supersymmetric topological matter. Eur. Phys. J. Plus 138, 1105 (2023). https://doi.org/10.1140/epjp/s13360-023-04590-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04590-1

Navigation