Skip to main content
Log in

Seismic ground motion study of free-field earthquakes in unsaturated soils incident with SV wave under thermal effects

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Based on the theory behind wave propagation in unsaturated porous thermoelastic media and single-phase thermoelastic media, a model has been established to describe the unsaturated soil free-field under plane SV-wave incidence. By employing the Helmholtz vector decomposition principle, the paper has analyzed the wave field in the free field of an unsaturated foundation affected by thermal changes. The paper has derived an analytical solution for the seismic ground motion of the free field of an unsaturated foundation subjected to plane SV-wave incidence under the thermal influence. The influence of thermal physical parameters such as thermal conductivity, medium temperature, and thermal expansion coefficient on the seismic ground motion of free field on unsaturated foundations is analyzed through numerical calculation. The results show that the amplification coefficients for horizontal and vertical displacement obtained under the two theoretical models with and without thermal effects are significantly different. As an increase in the thermal expansion coefficient, the surface vertical displacement amplification coefficient rises, while it has a negligible impact on the horizontal displacement amplification coefficient. As the temperature of the medium rises, the horizontal displacement and vertical displacement amplification coefficients gradually decrease and increase, respectively. On the other hand, the thermal conductivity and phase lag of the heat flux have a tiny impact on the amplification coefficients for surface displacement. Furthermore, with a rise in saturation, the amplification coefficients for horizontal displacement gradually increase, and the amplification coefficients for vertical displacement gradually decrease. A gas phase in pores significantly affects the surface displacement amplification coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has associated data in a data repository. [Authors’ comment: The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.]

References

  1. M. Biot, J. Appl. Phys. 23, 91–96 (1956)

    Google Scholar 

  2. J. Yang, S. Wu, Y. Cai, J. Vib. Eng 128, 1 (1996)

    Google Scholar 

  3. G. Liu, K. Xie, R. Zheng, Sci. In China (Ser. E Tech. Sci.). 39, 359–367 (2009)

    Google Scholar 

  4. Z. Liu, Z. Wang, A. Cheng et al., Appl. Math. Model. 97, 721–740 (2021)

    Article  MathSciNet  Google Scholar 

  5. Z. Ba, Q. Sang, J. Liang. Tunn. Undergr. Space Technol. 119, 104248 (2022)

    Article  Google Scholar 

  6. C. Cui, K. Meng, C. Xu et al., Comput. Geotech. 131, 103942 (2021)

    Article  Google Scholar 

  7. M. Tajuddin, S.J. Hussaini, J. Appl. Geophys. 58, 59–86 (2005)

    Article  ADS  Google Scholar 

  8. I. Vardoulakis, D.E. Beskos, Mech. Mater. 5, 87 (1986)

    Article  Google Scholar 

  9. K. Tuncay, M. Yavuz Corapcioglu, J. Geophys. Res. 101, 25149 (1996)

    Article  ADS  Google Scholar 

  10. C. Wei, K.K. Muraleetharan, Int. J. Eng. Sci. 40, 1807 (2002)

    Article  Google Scholar 

  11. W.C. Lo, G. Sposito, E. Majer, Water Resour. Res. 41, 1 (2005)

    Article  Google Scholar 

  12. J.F. Lu, A. Hanyga, Int. J. Solids Struct. 42, 2689 (2005)

    Article  Google Scholar 

  13. Y. Cai, B. Li, C. Xu, Chin. J. Rock Mech. 2009, 1 (2006)

    Google Scholar 

  14. W. Chen, T. Xia, W. Hu, Int. J. Solids Struct. 48, 2402 (2011)

    Article  Google Scholar 

  15. W. Chen, T. Xia, W. Chen, C. Zhai, Appl. Math. Mech.-Engl. Ed. 33, 829 (2012)

    Article  Google Scholar 

  16. S.K. Tomar, A. Arora, Int. J. Solids Struct. 43, 1991 (2006)

    Article  Google Scholar 

  17. H.W. Lord, Y. Shulman, J. Meth. Phys. Solids. 15, 299–309 (1967)

    Article  ADS  Google Scholar 

  18. C. Pecker, H. Deresiewicz, Acta Mech. 16, 45 (1973)

    Article  Google Scholar 

  19. H.M. Youssef, Int. J. Rock Mech. Min. Sci. 44, 222–227 (2007)

    Article  Google Scholar 

  20. H. Liu, F. Zhou, G. Yue, L. Hao, Rock Soil Mech. 41, 1613–1624 (2020)

    Google Scholar 

  21. R. Zheng, G. Liu, Y. Deng, H. Tao, Chin. J. Geotech. Eng. 35, 839–843 (2013)

    Google Scholar 

  22. M.A. Biot, J. Acoust. Soc. Am. 28, 168–178 (2005)

    Article  ADS  Google Scholar 

  23. H. Liu, F. Zhou, L. Hao, J. Earthq. Eng. 43, 105–112 (2021)

    Google Scholar 

  24. H. Liu, G. Dai, F. Zhou, Z. Mu, Eur. Phys. J. Plus 136, 1163 (2021)

    Article  Google Scholar 

  25. W. Li, J. Zheng. Chin. J. Geotech. Eng. 39, 427–435 (2017)

    Google Scholar 

  26. W. Li, J. Zheng, M.D. Trifunac, Soil Dyn. Earthq. 110, 159 (2018)

    Article  Google Scholar 

  27. H. Liu, F. Zhou, R. Zhan, G. Yue, C. Liu, J. Therm. Stress. 43, 1 (2020)

    Article  Google Scholar 

  28. J. Zheng, J. Beijing Jiaotong Univ. (2015).

  29. H. Liu, F. Zhou, R. Zhan, G. Yue, Chin. J. Rock Mech. Eng. 39, 2693–2702 (2020)

    Google Scholar 

  30. H. Liu. Lanzhou Unive of Technol. (2020)

Download references

Acknowledgements

The authors express their gratitude for the financial assistance provided by the Natural Science Foundation of China (No. 52168053) and the Qinghai Province Science and Technology Department Project (No. 2021-ZJ-943Q).

Author information

Authors and Affiliations

Authors

Contributions

Y.Q.Y. and Q.M. performed conceptualization; Y.Q.Y. and Q.M. done methodology; Y.Q.Y. was involved in formal analysis and investigation and writing—original draft preparation; Q.M. done writing—review and editing; Q.M. contributed to resources; Y.X.M. supervised the study.

Corresponding author

Correspondence to Qiang Ma.

Ethics declarations

Conflict of interest

All authors of this article have no financial or conflict of interest.

Appendix 1

Appendix 1

$$f_{11} = \left[ {\left( {\lambda^{e} + 2\mu^{e} n_{1rp1}^{2} } \right)k_{1rp1}^{2} + 3K_{b}^{e} \beta_{T}^{e} \delta_{TP1}^{e} } \right]\exp (ik_{1rp1} n_{1rp1} H)$$

\(f_{12} = \left[ {\left( {\lambda^{e} + 2\mu^{e} n_{1rp2}^{2} } \right)k_{1rp2}^{2} + 3K_{b}^{e} \beta_{T}^{e} \delta_{TP2}^{e} } \right]\exp (ik_{1rp2} n_{1rp2} H)\)

$$f_{13} = 2\mu^{e} l_{1rs} n_{1rs} k_{1rs}^{2} \exp (ik_{1rs} n_{1rs} H)$$

\(f_{14} = - \left[ {\left( {\overline{\lambda } + 2\mu n_{tp1}^{2} + M_{1} \delta_{fp1} + M_{2} \delta_{ap1} } \right)k_{tp1}^{2} - M_{3} \delta_{Tp1} } \right]\exp ( - ik_{tp1} n_{tp1} H)\)

$$f_{15} = - \left[ {\left( {\overline{\lambda } + 2\mu n_{tp2}^{2} + M_{1} \delta_{fp2} + M_{2} \delta_{ap2} } \right)k_{tp2}^{2} - M_{3} \delta_{Tp2} } \right]\exp ( - ik_{tp2} n_{tp2} H)$$

\(f_{16} = - \left[ {\left( {\overline{\lambda } + 2\mu n_{tp3}^{2} + M_{1} \delta_{fp3} + M_{2} \delta_{ap3} } \right)k_{tp3}^{2} - M_{3} \delta_{Tp3} } \right]\exp ( - ik_{tp3} n_{tp3} H)\)

$$f_{17} = - \left[ {\left( {\overline{\lambda } + 2\mu n_{tp4}^{2} + M_{1} \delta_{fp4} + M_{2} \delta_{ap4} } \right)k_{tp4}^{2} - M_{3} \delta_{Tp4} } \right]\exp ( - ik_{tp4} n_{tp4} H)$$

\(f_{18} = 2\mu l_{2ts} n_{2ts} k_{2ts}^{2} \exp ( - ik_{2ts} n_{2ts} H)\)

$$f_{19} = - \left[ {\left( {\overline{\lambda } + 2\mu n_{2rp1}^{2} + M_{1} \delta_{2rp1} + M_{2} \delta_{2rp1} } \right)k_{2rp1}^{2} - M_{3} \delta_{Tp1} } \right]\exp (ik_{2rp1} n_{2rp1} H)$$
$$f_{1(10)} = - \left[ {\left( {\overline{\lambda } + 2\mu n_{2rp2}^{2} + M_{1} \delta_{2rp2} + M_{2} \delta_{2rp2} } \right)k_{2rp2}^{2} - M_{3} \delta_{Tp2} } \right]\exp (ik_{2rp2} n_{2rp2} H)$$
$$f_{1(11)} = - \left[ {\left( {\overline{\lambda } + 2\mu n_{2rp3}^{2} + M_{1} \delta_{2rp3} + M_{2} \delta_{2rp3} } \right)k_{2rp3}^{2} - M_{3} \delta_{Tp3} } \right]\exp (ik_{2rp3} n_{2rp3} H)$$
$$f_{1(12)} = - \left[ {\left( {\overline{\lambda } + 2\mu n_{2rp4}^{2} + M_{1} \delta_{2rp4} + M_{2} \delta_{2rp4} } \right)k_{2rp4}^{2} - M_{3} \delta_{Tp4} } \right]\exp (ik_{2rp4} n_{2rp4} H)$$

\(f_{1(13)} = - 2\mu l_{2rs} n_{2rs} k_{2rs}^{2} \exp \left( {ik_{2rs} n_{2rs} H} \right)\)

$$f_{21} = 2\mu^{e} l_{1rp1} n_{1rp1} k_{1rp1}^{2} \exp (ik_{1rp1} n_{1rp1} H)$$

\(f_{22} = 2\mu^{e} l_{1rp2} n_{1rp2} k_{1rp2}^{2} \exp (ik_{1rp2} n_{1rp2} H)\)

$$f_{23} = \mu^{e} \left( {l_{1rs}^{2} - n_{1rs}^{2} } \right)k_{1rs}^{2} \exp \left( {ik_{1rs} n_{1rs} H} \right)$$

\(f_{24} = 2\mu l_{tp1} n_{tp1} k_{tp1}^{2} \exp \left( { - ik_{tp1} n_{tp1} H} \right)\)

$$f_{25} = 2\mu l_{tp2} n_{tp2} k_{tp2}^{2} \exp \left( { - ik_{tp2} n_{tp2} H} \right)$$

\(f_{26} = 2\mu l_{tp3} n_{tp3} k_{tp3}^{2} \exp \left( { - ik_{tp3} n_{tp3} H} \right)\)

$$f_{27} = 2\mu l_{tp4} n_{tp4} k_{tp4}^{2} \exp \left( { - ik_{tp4} n_{tp4} H} \right)$$

\(f_{28} = \mu \left( {n_{2ts}^{2} - l_{2ts}^{2} } \right)k_{2ts}^{2} \exp \left( { - ik_{2ts} n_{2ts} H} \right)\)

$$f_{29} = - 2\mu l_{2rp1} n_{2rp1} k_{2rp1}^{2} \exp \left( {ik_{2rp1} n_{2rp1} H} \right)$$

\(f_{2(10)} = - 2\mu l_{2rp2} n_{2rp2} k_{2rp2}^{2} \exp \left( {ik_{2rp2} n_{2rp2} H} \right)\)

$$f_{2(11)} = - 2\mu l_{2rp3} n_{2rp3} k_{2rp3}^{2} \exp \left( {ik_{2rp3} n_{2rp3} H} \right)$$

\(f_{2(12)} = - 2\mu l_{2rp4} n_{2rp4} k_{2rp4}^{2} \exp \left( {ik_{2rp4} n_{2rp4} H} \right)\)

$$f_{2(13)} = \mu \left( {n_{2rs}^{2} - l_{2rs}^{2} } \right)k_{2rs}^{2} \exp \left( {ik_{2rs} n_{2rs} H} \right)$$

\(f_{31} = - n_{1rp1} k_{1rp1} \exp \left( {ik_{1rp1} n_{1rp1} H} \right)\)

$$f_{32} = - n_{1rp2} k_{1rp2} \exp \left( {ik_{1rp2} n_{1rp2} H} \right)$$

\(f_{33} = - l_{1rs} k_{1rs} \exp \left( {ik_{1rs} n_{1rs} H} \right)\)

$$f_{34} = - n_{tp1} k_{tp1} \exp \left( { - ik_{tp1} n_{tp1} H} \right)$$

\(f_{35} = - n_{tp2} k_{tp2} \exp \left( { - ik_{tp2} n_{tp2} H} \right)\)

$$f_{36} = - n_{tp3} k_{tp3} \exp \left( { - ik_{tp3} n_{tp3} H} \right)$$

\(f_{37} = - n_{tp4} k_{tp4} \exp \left( { - ik_{tp4} n_{tp4} H} \right)\)

$$f_{38} = l_{2ts} k_{2ts} \exp \left( { - ik_{2ts} n_{2ts} H} \right)$$

\(f_{39} = n_{2rp1} k_{2rp1} \exp \left( {ik_{2rp1} n_{2rp1} H} \right)\)

$$f_{3(10)} = n_{2rp2} k_{2rp2} \exp \left( {ik_{2rp2} n_{2rp2} H} \right)$$

\(f_{3(11)} = n_{2rp3} k_{2rp3} \exp \left( {ik_{2rp3} n_{2rp3} H} \right)\)

$$f_{3(12)} = n_{2rp4} k_{2rp4} \exp \left( {ik_{2rp4} n_{2rp4} H} \right)$$

\(f_{3(13)} = l_{2rs} k_{2rs} \exp \left( {ik_{2rs} n_{2rs} H} \right)\)

$$f_{41} = - l_{1rp1} k_{1rp1} \exp \left( {ik_{1rp1} n_{1rp1} H} \right)$$

\(f_{42} = - l_{1rp2} k_{1rp2} \exp \left( {ik_{1rp2} n_{1rp2} H} \right)\)

$$f_{43} = n_{1rs} k_{1rs} \exp \left( {ik_{1rs} n_{1rs} H} \right)$$

\(f_{44} = l_{tp1} k_{tp1} \exp \left( { - ik_{tp1} n_{tp1} H} \right)\)

$$f_{45} = l_{tp2} k_{tp2} \exp \left( { - ik_{tp2} n_{tp2} H} \right)$$

\(f_{46} = l_{tp3} k_{tp3} \exp \left( { - ik_{tp3} n_{tp3} H} \right)\)

$$f_{47} = l_{tp4} k_{tp4} \exp \left( { - ik_{tp4} n_{tp4} H} \right)$$

\(f_{48} = n_{2ts} k_{2ts} \exp \left( { - ik_{2ts} n_{2ts} H} \right)\)

$$f_{49} = l_{2rp1} k_{2rp1} \exp \left( {ik_{2rp1} n_{2rp1} H} \right)$$

\(f_{4(10)} = l_{2rp2} k_{2rp2} \exp \left( {ik_{2rp2} n_{2rp2} H} \right)\)

$$f_{4(11)} = l_{2rp3} k_{2rp3} \exp \left( {ik_{2rp3} n_{2rp3} H} \right)$$

\(f_{4(12)} = l_{2rp4} k_{2rp4} \exp \left( {ik_{2rp4} n_{2rp4} H} \right)\)

$$f_{4(13)} = - n_{2rs} k_{2rs} \exp \left( {ik_{2rs} n_{2rs} H} \right)$$

\(f_{51} = - \delta_{Tp1}^{e} \exp \left( {ik_{1rp1} n_{1rp1} H} \right)\)

$$f_{52} = - \delta_{Tp2}^{e} \exp \left( {ik_{1rp2} n_{1rp2} H} \right)$$

\(f_{53} = 0\)

$$f_{54} = \delta_{Tp1} \exp \left( { - ik_{tp1} n_{tp1} H} \right)$$

\(f_{55} = \delta_{Tp2} \exp \left( { - ik_{tp2} n_{tp2} H} \right)\)

$$f_{56} = \delta_{Tp3} \exp \left( { - ik_{tp3} n_{tp3} H} \right)$$

\(f_{57} = \delta_{Tp4} \exp \left( { - ik_{tp4} n_{tp4} H} \right)\)

$$f_{58} = 0$$

\(f_{59} = \delta_{Tp1} \exp \left( {ik_{2rp1} n_{2rp1} H} \right)\)

$$f_{5(10)} = \delta_{Tp2} \exp \left( {ik_{2rp2} n_{2rp2} H} \right)$$

\(f_{5(11)} = \delta_{Tp3} \exp \left( {ik_{2rp3} n_{2rp3} H} \right)\)

$$f_{5(12)} = \delta_{Tp4} \exp \left( {ik_{2rp4} n_{2rp4} H} \right)$$

\(f_{5(13)} = 0\)

$$f_{61} = K^{e} n_{1rp1} k_{1rp1} \delta_{Tp1}^{e} \exp \left( {ik_{1rp1} n_{1rp1} H} \right)$$

\(f_{62} = K^{e} n_{1rp2} k_{1rp2} \delta_{Tp2}^{e} \exp \left( {ik_{1rp2} n_{1rp2} H} \right)\)

$$f_{63} = 0$$

\(f_{64} = Kn_{tp1} k_{tp1} \delta_{Tp1} \exp \left( { - ik_{tp1} n_{tp1} H} \right)\)

$$f_{65} = Kn_{tp2} k_{tp2} \delta_{Tp2} \exp \left( { - ik_{tp2} n_{tp2} H} \right)$$

\(f_{66} = Kn_{tp3} k_{tp3} \delta_{Tp3} \exp \left( { - ik_{tp3} n_{tp3} H} \right)\)

$$f_{67} = Kn_{tp4} k_{tp4} \delta_{Tp4} \exp \left( { - ik_{tp4} n_{tp4} H} \right)$$

\(f_{68} = 0\)

$$f_{69} = - Kn_{2rp1} k_{2rp1} \delta_{Tp1} \exp \left( {ik_{2rp1} n_{2rp1} H} \right)$$

\(f_{6(10)} = - Kn_{2rp2} k_{2rp2} \delta_{Tp2} \exp \left( {ik_{2rp2} n_{2rp2} H} \right)\)

$$f_{6(11)} = - Kn_{2rp3} k_{2rp3} \delta_{Tp3} \exp \left( {ik_{2rp3} n_{2rp3} H} \right)$$

\(f_{6(12)} = - Kn_{2rp4} k_{2rp4} \delta_{Tp4} \exp \left( {ik_{2rp4} n_{2rp4} H} \right)\)

$$f_{6(13)} = 0$$

\(f_{71} = f_{72} = f_{73} = 0\)

$$f_{74} = - n_{tp1} k_{tp1} \delta_{fp1} \exp \left( { - ik_{tp1} n_{tp1} H} \right)$$

\(f_{75} = - n_{tp2} k_{tp2} \delta_{fp2} \exp \left( { - ik_{tp2} n_{tp2} H} \right)\)

$$f_{76} = - n_{tp3} k_{tp3} \delta_{fp3} \exp \left( { - ik_{tp3} n_{tp3} H} \right)$$

\(f_{77} = - n_{tp4} k_{tp4} \delta_{fp4} \exp \left( { - ik_{tp4} n_{tp4} H} \right)\)

$$f_{78} = l_{2ts} k_{2ts} \delta_{fs} \exp \left( { - ik_{2ts} n_{2ts} H} \right)$$

\(f_{79} = n_{2rp1} k_{2rp1} \delta_{fp1} \exp \left( {ik_{2rp1} n_{2rp1} H} \right)\)

$$f_{7(10)} = n_{2rp2} k_{2rp2} \delta_{fp2} \exp \left( {ik_{2rp2} n_{2rp2} H} \right)$$

\(f_{7(11)} = n_{2rp3} k_{2rp3} \delta_{fp3} \exp \left( {ik_{2rp3} n_{2rp3} H} \right)\)

$$f_{7(12)} = n_{2rp4} k_{2rp4} \delta_{fp4} \exp \left( {ik_{2rp4} n_{2rp4} H} \right)$$

\(f_{7(13)} = l_{2rs} k_{2rs} \delta_{fs} \exp \left( {ik_{2rs} n_{2rs} H} \right)\)

$$f_{81} = f_{82} = f_{83} = 0$$

\(f_{84} = - n_{tp1} k_{tp1} \delta_{ap1} \exp \left( { - ik_{tp1} n_{tp1} H} \right)\)

$$f_{85} = - n_{tp2} k_{tp2} \delta_{ap2} \exp \left( { - ik_{tp2} n_{tp2} H} \right)$$

\(f_{86} = - n_{tp3} k_{tp3} \delta_{ap3} \exp \left( { - ik_{tp3} n_{tp3} H} \right)\)

$$f_{87} = - n_{tp4} k_{tp4} \delta_{ap4} \exp \left( { - ik_{tp4} n_{tp4} H} \right)$$

\(f_{88} = l_{2ts} k_{2ts} \delta_{as} \exp \left( { - ik_{2ts} n_{2ts} H} \right)\)

$$f_{89} = n_{2rp1} k_{2rp1} \delta_{ap1} \exp \left( {ik_{2rp1} n_{2rp1} H} \right)$$

\(f_{8(10)} = n_{2rp2} k_{2rp2} \delta_{ap2} \exp \left( {ik_{2rp2} n_{2rp2} H} \right)\)

$$f_{8(11)} = n_{2rp3} k_{2rp3} \delta_{ap3} \exp \left( {ik_{2rp3} n_{2rp3} H} \right)$$

\(f_{8(12)} = n_{2rp4} k_{2rp4} \delta_{ap4} \exp \left( {ik_{2rp4} n_{2rp4} H} \right)\)

$$f_{8(13)} = l_{2rs} k_{2rs} \delta_{as} \exp \left( {ik_{2rs} n_{2rs} H} \right)$$

\(f_{91} = f_{92} = f_{93} = 0\)

$$f_{94} = \left( {\overline{\lambda } + 2\mu n_{tp1}^{2} + M_{1} \delta_{fp1} + M_{2} \delta_{ap1} } \right)k_{tp1}^{2} - M_{3} \delta_{Tp1}$$

\(f_{95} = \left( {\overline{\lambda } + 2\mu n_{tp2}^{2} + M_{1} \delta_{fp2} + M_{2} \delta_{ap2} } \right)k_{tp2}^{2} - M_{3} \delta_{Tp2}\)

$$f_{96} = \left( {\overline{\lambda } + 2\mu n_{tp3}^{2} + M_{1} \delta_{fp3} + M_{2} \delta_{ap3} } \right)k_{tp3}^{2} - M_{3} \delta_{Tp3}$$

\(f_{97} = \left( {\overline{\lambda } + 2\mu n_{tp4}^{2} + M_{1} \delta_{fp4} + M_{2} \delta_{ap4} } \right)k_{tp4}^{2} - M_{3} \delta_{Tp4}\)

$$f_{98} = - 2\mu l_{2ts} n_{2ts} k_{2ts}^{2}$$

\(f_{99} = \left( {\overline{\lambda } + 2\mu n_{2rp1}^{2} + M_{1} \delta_{fp1} + M_{2} \delta_{ap1} } \right)k_{2rp1}^{2} - M_{3} \delta_{Tp1}\)

$$f_{9(10)} = \left( {\overline{\lambda } + 2\mu n_{2rp2}^{2} + M_{1} \delta_{fp2} + M_{2} \delta_{ap2} } \right)k_{2rp2}^{2} - M_{3} \delta_{Tp2}$$

\(f_{9(11)} = \left( {\overline{\lambda } + 2\mu n_{2rp3}^{2} + M_{1} \delta_{fp3} + M_{2} \delta_{ap3} } \right)k_{2rp3}^{2} - M_{3} \delta_{Tp3}\)

$$f_{9(12)} = \left( {\overline{\lambda } + 2\mu n_{2rp4}^{2} + M_{1} \delta_{fp4} + M_{2} \delta_{ap4} } \right)k_{2rp4}^{2} - M_{3} \delta_{Tp4}$$

\(f_{9(13)} = 2\mu l_{2rs} n_{2rs} k_{2rs}^{2}\)

$$f_{10\left( 1 \right)} = f_{10\left( 2 \right)} = f_{10\left( 3 \right)} = 0$$

\(f_{10\left( 4 \right)} = - 2\mu l_{tp1} n_{tp1} k_{tp1}^{2}\)

$$f_{10\left( 5 \right)} = - 2\mu l_{tp2} n_{tp2} k_{tp2}^{2}$$

\(f_{10\left( 6 \right)} = - 2\mu l_{tp3} n_{tp3} k_{tp3}^{2}\)

$$f_{10\left( 7 \right)} = - 2\mu l_{tp4} n_{tp4} k_{tp4}^{2}$$

\(f_{10\left( 8 \right)} = \mu \left( {1 - 2n_{2ts}^{2} } \right)k_{2ts}^{2}\)

$$f_{10\left( 9 \right)} = 2\mu l_{2rp1} n_{2rp1} k_{2rp1}^{2}$$

\(f_{{10\left( {10} \right)}} = 2\mu l_{2rp2} n_{2rp2} k_{2rp2}^{2}\)

$$f_{{10\left( {11} \right)}} = 2\mu l_{2rp3} n_{2rp3} k_{2rp3}^{2}$$

\(f_{{10\left( {12} \right)}} = 2\mu l_{2rp4} n_{2rp4} k_{2rp4}^{2}\)

$$f_{{10\left( {13} \right)}} = \mu \left( {1 - 2n_{2rs}^{2} } \right)k_{2rs}^{2}$$

\(f_{11\left( 1 \right)} = f_{11\left( 2 \right)} = f_{11\left( 3 \right)} = 0\)

$$f_{11\left( 4 \right)} = \left( {N_{1} + N_{2} \delta_{fp1} + N_{3} \delta_{ap1} } \right)k_{tp1}^{2} - N_{4} \delta_{Tp1}$$

\(f_{11\left( 5 \right)} = \left( {N_{1} + N_{2} \delta_{fp2} + N_{3} \delta_{ap2} } \right)k_{tp2}^{2} - N_{4} \delta_{Tp2}\)

$$f_{11\left( 6 \right)} = \left( {N_{1} + N_{2} \delta_{fp3} + N_{3} \delta_{ap3} } \right)k_{tp1}^{2} - N_{4} \delta_{Tp3}$$

\(f_{11\left( 7 \right)} = \left( {N_{1} + N_{2} \delta_{fp4} + N_{3} \delta_{ap4} } \right)k_{tp4}^{2} - N_{4} \delta_{Tp4}\)

$$f_{11\left( 8 \right)} = 0$$

\(f_{11\left( 9 \right)} = \left( {N_{1} + N_{2} \delta_{fp1} + N_{3} \delta_{ap1} } \right)k_{2rp1}^{2} - N_{4} \delta_{Tp1}\)

$$f_{{11\left( {10} \right)}} = \left( {N_{1} + N_{2} \delta_{fp2} + N_{3} \delta_{ap2} } \right)k_{2rp2}^{2} - N_{4} \delta_{Tp2}$$

\(f_{{11\left( {12} \right)}} = \left( {N_{1} + N_{2} \delta_{fp4} + N_{3} \delta_{ap4} } \right)k_{2rp4}^{2} - N_{4} \delta_{Tp4}\)

$$f_{{11\left( {13} \right)}} = 0$$

\(f_{{11\left( {11} \right)}} = \left( {N_{1} + N_{2} \delta_{fp3} + N_{3} \delta_{ap3} } \right)k_{2rp3}^{2} - N_{4} \delta_{Tp3}\)

$$f_{12\left( 1 \right)} = f_{12\left( 2 \right)} = f_{12\left( 3 \right)} = 0$$

\(f_{12\left( 4 \right)} = \left( {N_{5} + N_{6} \delta_{fp1} + N_{7} \delta_{ap1} } \right)k_{tp1}^{2} - N_{8} \delta_{Tp1}\)

$$f_{12\left( 5 \right)} = \left( {N_{5} + N_{6} \delta_{fp2} + N_{7} \delta_{ap2} } \right)k_{tp2}^{2} - N_{8} \delta_{Tp2}$$

\(f_{12\left( 6 \right)} = \left( {N_{5} + N_{6} \delta_{fp3} + N_{7} \delta_{ap3} } \right)k_{tp3}^{2} - N_{8} \delta_{Tp3}\)

$$f_{12\left( 7 \right)} = \left( {N_{5} + N_{6} \delta_{fp4} + N_{7} \delta_{ap4} } \right)k_{tp4}^{2} - N_{8} \delta_{Tp4}$$

\(f_{12\left( 8 \right)} = 0\)

$$f_{12\left( 9 \right)} = \left( {N_{5} + N_{6} \delta_{fp1} + N_{7} \delta_{ap1} } \right)k_{2rp1}^{2} - N_{8} \delta_{Tp1}$$

\(f_{{12\left( {10} \right)}} = \left( {N_{5} + N_{6} \delta_{fp2} + N_{7} \delta_{ap2} } \right)k_{2rp2}^{2} - N_{8} \delta_{Tp2}\)

$$f_{{12\left( {11} \right)}} = \left( {N_{5} + N_{6} \delta_{fp3} + N_{7} \delta_{ap3} } \right)k_{2rp3}^{2} - N_{8} \delta_{Tp3}$$

\(f_{{12\left( {12} \right)}} = \left( {N_{5} + N_{6} \delta_{fp4} + N_{7} \delta_{ap4} } \right)k_{2rp4}^{2} - N_{8} \delta_{Tp4}\)

$$f_{{12\left( {13} \right)}} = 0$$

\(f_{13\left( 1 \right)} = f_{13\left( 2 \right)} = f_{13\left( 3 \right)} = 0\)

$$f_{13\left( 4 \right)} = n_{tp1}^{2} k_{tp1}^{2} \delta_{Tp1}$$

\(f_{13\left( 5 \right)} = n_{tp2}^{2} k_{tp2}^{2} \delta_{Tp2}\)

$$f_{13\left( 6 \right)} = n_{tp3}^{2} k_{tp3}^{2} \delta_{Tp3}$$

\(f_{13\left( 7 \right)} = n_{tp4}^{2} k_{tp4}^{2} \delta_{Tp4}\)

$$f_{13\left( 8 \right)} = 0$$

\(f_{13\left( 9 \right)} = n_{2rp1}^{2} k_{2rp1}^{2} \delta_{Tp1}\)

$$f_{{13\left( {10} \right)}} = n_{2rp2}^{2} k_{2rp2}^{2} \delta_{Tp2}$$

\(f_{{13\left( {11} \right)}} = n_{2rp3}^{2} k_{2rp3}^{2} \delta_{Tp3}\)

$$f_{{13\left( {12} \right)}} = n_{2rp4}^{2} k_{2rp4}^{2} \delta_{Tp4}$$

\(f_{{13\left( {13} \right)}} = 0\)

$$g_{1} = 2\mu^{e} k_{is}^{2} l_{is} n_{is} \exp ( - ik_{is} n_{is} H)$$

\(g_{2} = \mu^{e} (n_{is}^{2} - l_{is}^{2} )k_{is}^{2} \exp ( - ik_{is} n_{is} H)\)

$$g_{3} = k_{is} l_{is} \exp ( - ik_{is} n_{is} H)$$

\(g_{4} = n_{is} k_{is} \exp \left( { - ik_{is} n_{is} H} \right)\)

$$g_{5} = g_{6} = g_{7} = g_{8} = g_{9} = g_{10} = g_{11} = g_{12} = g_{13} = 0$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Ma, Q. & Ma, Y. Seismic ground motion study of free-field earthquakes in unsaturated soils incident with SV wave under thermal effects. Eur. Phys. J. Plus 138, 927 (2023). https://doi.org/10.1140/epjp/s13360-023-04553-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04553-6

Navigation