Skip to main content
Log in

A note on the description of plane gravitational waves in Fermi coordinates

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We use the formalism of Fermi coordinates to describe the interaction of a plane gravitational wave in the proper detector frame. In doing so, we emphasize that in this frame the action of the gravitational wave can be explained in terms of a gravitoelectromagnetic analogy. In particular, up to linear displacements from the reference world-line, the effects of the wave on test masses can be described in terms of a Lorentz-like force equation. In this framework, we focus on the effects on time measurements provoked by the passage of the wave, and evaluate their order of magnitude. Eventually, we calculate the expression of the local spacetime metric in cylindrical coordinates adapted to the symmetries of the gravitational field and show its relevance in connection with the helicity–rotation coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.

Notes

  1. Latin indices refer to space coordinates, while Greek indices to spacetime ones. We will use bold-face symbols like \(\textbf{W}\) to refer to vectors in the Fermi frame; the spacetime signature is \(+2\) in our convention.

  2. In \(e^{\mu }_{(\alpha )}\) tetrad indices like \((\alpha )\) are within parentheses, while \(\mu \) is a background spacetime index; however, for the sake of simplicity, we drop here and henceforth parentheses to refer to tetrad indices, which are the only ones used.

  3. Notice that this integration is path depending, since \(\varvec{\nabla }\times \textbf{A} = \varvec{B} \ne 0\).

References

  1. B.P. Abbott, R. Abbott, T. Abbott, M. Abernathy, F. Acernese, K. Ackley, C. Adams, T. Adams, P. Addesso, R. Adhikari et al., LIGO scientific collaboration and virgo collaboration. Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  2. G. Agazie et al., NANOGrav. Astrophys. J. Lett. 951, L8 (2023). arXiv:2306.16213 [astro-ph.HE]

    Article  ADS  Google Scholar 

  3. E. Burns, A. Tohuvavohu, J. M. Bellovary, E. Blaufuss, T. J. Brandt, S. Buson, R. Caputo, S. B. Cenko, N. Christensen, J. W. Conklin, F. D’Ammando, K. E. S. Ford, A. Franckowiak, C. Fryer, C. M. Hui, K. Holley-Bockelmann, T. Jaffe, T. Kupfer, M. Karovska, B. D. Metzger, J. Racusin, B. Rani, M. Santander, J. Tomsick, C. Wilson-Hodge, Opportunities for multimessenger astronomy in the 2020s (2019). arXiv:1903.04461 [astro-ph.HE]

  4. M. Rakhmanov, Class. Quantum Gravity 31, 085006 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  5. E.E. Flanagan, S.A. Hughes, New J. Phys. 7, 204 (2005)

    Article  ADS  Google Scholar 

  6. M.L. Ruggiero, Am. J. Phys. 89, 639 (2021). arXiv:2101.06746 [gr-qc]

    Article  ADS  Google Scholar 

  7. M. Maggiore, Gravitational Waves: Volume 1: Theory and Experiments (Oxford University Press, Oxford, 2007)

    Book  Google Scholar 

  8. J. Synge, Relativity: The General Theory, North-Holland Series in Physics No, vol. 1 (North-Holland Publishing Company, Amsterdam, 1960)

    Google Scholar 

  9. M.L. Ruggiero, A. Ortolan, J. Phys. Commun. 4, 055013 (2020)

    Article  Google Scholar 

  10. M.L. Ruggiero, Gen. Rel. Grav. 54, 97 (2022). arXiv:2204.08914 [gr-qc]

    Article  ADS  Google Scholar 

  11. M.L. Ruggiero, A. Tartaglia, Nuovo Cim. B 117, 743 (2002). arXiv:gr-qc/0207065 [gr-qc]

    ADS  Google Scholar 

  12. B. Mashhoon, in The Measurement of Gravitomagnetism: A Challenging Enterprise, edited by L. Iorio (Nova Science, New York, 2003) arXiv:gr-qc/0311030 [gr-qc]

  13. L.F.O. Costa, J. Natario, Gen. Rel. Grav. 46, 1792 (2014). arXiv:1207.0465 [gr-qc]

    Article  ADS  Google Scholar 

  14. M. L. Ruggiero and D. Astesiano (2023), arXiv:2304.02167 [gr-qc]

  15. D. Bini, A. Geralico, A. Ortolan, Phys. Rev. D 95, 104044 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. M.L. Ruggiero, A. Ortolan, Phys. Rev. D 102, 101501 (2020)

    Article  ADS  Google Scholar 

  17. S. Capozziello, M. De Laurentis, L. Forte, F. Garufi, L. Milano, Phys. Scr. 81, 035008 (2010). arXiv:0909.0895 [gr-qc]

    Article  ADS  Google Scholar 

  18. S. Capozziello, M. DeLaurentis, F. Garufi, L. Milano, Phys. Scr. 79, 025901 (2009). arXiv:0812.4063 [gr-qc]

    Article  ADS  Google Scholar 

  19. S. Rao, M. Brüggen, and J. Liske, Phys. Rev. D 102, 122006 (2020), [Erratum: Phys.Rev.D 105, 069903 (2022)], arXiv:2012.00529 [astro-ph.IM]

  20. S. Rao, J. Baumgarten, J. Liske, and M. Brüggen, (2023), arXiv:2301.08331 [gr-qc]

  21. A. Berlin et al., in ARIES WP6 Workshop: Storage Rings and Gravitational Waves (2021) arXiv:2105.00992 [physics.acc-ph]

  22. A. Berlin, D. Blas, R. Tito D’Agnolo, S. A. R. Ellis, R. Harnik, Y. Kahn, and J. Schütte-Engel, Phys. Rev. D 105, 116011 (2022), arXiv:2112.11465 [hep-ph]

  23. W.-T. Ni, M. Zimmermann, Phys. Rev. D Part. Fields 17, 1473 (1978)

    Article  ADS  Google Scholar 

  24. W.-Q. Li, W.-T. Ni, J. Math. Phys. 20, 1473 (1979)

    Article  ADS  Google Scholar 

  25. P.L. Fortini, C. Gualdi, Nuovo Cimento B Serie 71, 37 (1982)

    Article  ADS  Google Scholar 

  26. K.-P. Marzlin, Phys. Rev. D 50, 888 (1994)

    Article  ADS  Google Scholar 

  27. F. Manasse, C.W. Misner, J. Math. Phys. 4, 735 (1963)

    Article  ADS  Google Scholar 

  28. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (WH Freeman and Co., San Francisco, 1973)

    Google Scholar 

  29. M.L. Ruggiero, Universe 7, 451 (2021). arXiv:2111.09008 [gr-qc]

    Article  ADS  Google Scholar 

  30. N. Straumann, General Relativity, With Applications to Astrophysics (Springer, New York, 2013)

    MATH  Google Scholar 

  31. L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields, vol. 2 (Elsevier, New York, 2013)

    MATH  Google Scholar 

  32. L. Valbusa Dall’Armi, A. Nishizawa, A. Ricciardone, and S. Matarrese, (2023), arXiv:2301.08205 [astro-ph.CO]

  33. J. Ramos, B. Mashhoon, Phys. Rev. D 73, 084003 (2006). arXiv:gr-qc/0601054

    Article  ADS  MathSciNet  Google Scholar 

  34. B. Mashhoon, S. Rahvar, Universe 9, 6 (2023). arXiv:2211.01691 [gr-qc]

    Article  ADS  Google Scholar 

  35. J.C. Hauck, B. Mashhoon, Ann. Phys. 12, 275 (2003). arXiv:gr-qc/0304069

    Article  MathSciNet  Google Scholar 

  36. N. Ashby, Living Rev. Rel. 6, 1 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

The author acknowledges the contribution of the local research project Modelli gravitazionali per lo studio dell’universo (2022)—Dipartimento di Matematica “G.Peano”, Università degli Studi di Torino; this work is done within the activity of the Gruppo Nazionale per la Fisica Matematica (GNFM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Luca Ruggiero.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruggiero, M.L. A note on the description of plane gravitational waves in Fermi coordinates. Eur. Phys. J. Plus 138, 792 (2023). https://doi.org/10.1140/epjp/s13360-023-04424-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04424-0

Navigation