Skip to main content
Log in

Detecting properties of echoes from the inspiraling stage with ground-based detectors

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The nature of black holes is one of the most exciting issues in gravitational physics. If there is an exotic compact object as compact as a black hole but without a horizon, gravitational wave echoes may be produced after the merger. In this work, we show that for extreme-mass-ratio binaries, even during the inspiraling phase of compact binary coalescence, the existence of the hard surface of the exotic compact object will produce detectable signals on the gravitational waves. We predict that once the LIGO-Virgo-KAGRA, Einstein Telescope, or Cosmic Explorer detect such kinds of sources, our model shows that one can constrain the properties of surfaces of the compact objects in inspiraling stage better than the current level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data underlying this article will be shared on reasonable request to the corresponding author Wen-Biao Han.

References

  1. B.P. Abbott et al., GWTC-1: A gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Phys. Rev. X 9(3), 031040 (2019)

    Google Scholar 

  2. N.V. Krishnendu, K.G. Arun, C.K. Mishra, Testing the binary black hole nature of a compact binary coalescence. Phys. Rev. Lett. 119(9), 091101 (2017)

    Article  ADS  Google Scholar 

  3. R. Abbott, et al., Tests of General Relativity with GWTC-3. arXiv e-prints arXiv:2112.06861 (2021)

  4. R. Carballo-Rubio, F. Di Filippo, S. Liberati, M. Visser, Phenomenological aspects of black holes beyond general relativity. Phys. Rev. D 98(12), 124009 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  5. V. Cardoso, P. Pani, Testing the nature of dark compact objects: a status report. Living Rev. Relat. 22(1), 4 (2019)

    Article  ADS  Google Scholar 

  6. V. Cardoso, P. Pani, Tests for the existence of black holes through gravitational wave echoes. Nat. Astro. 1, 586–591 (2017)

    Article  ADS  Google Scholar 

  7. Z. Mark, A. Zimmerman, S.M. Du, Y. Chen, A recipe for echoes from exotic compact objects. Phys. Rev. D 96(8), 084002 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  8. S.M. Du, Y. Chen, Searching for near-horizon quantum structures in the binary black-hole stochastic gravitational-wave background. Phys. Rev. Lett. 121(5), 051105 (2018)

    Article  ADS  Google Scholar 

  9. B. Chen, Y. Chen, Y. Ma, K.L.R. Lo, L. Sun, Instability of exotic compact objects and its implications for gravitational-wave echoes. arXiv e-prints arXiv:1902.08180 (2019)

  10. S. Xin, B. Chen, R.K.L. Lo, L. Sun, W.B. Han, X. Zhong, M. Srivastava, S. Ma, Q. Wang, Y. Chen, Gravitational-wave echoes from spinning exotic compact objects: numerical waveforms from the Teukolsky equation. Phys. Rev. D 104(10), 104005 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  11. A. Maselli, S.H. Völkel, K.D. Kokkotas, Parameter estimation of gravitational wave echoes from exotic compact objects. Phys. Rev. D 96(6), 064045 (2017)

    Article  ADS  Google Scholar 

  12. K.W. Tsang, M. Rollier, A. Ghosh, A. Samajdar, M. Agathos, K. Chatziioannou, V. Cardoso, G. Khanna, C. Van Den Broeck, A morphology-independent data analysis method for detecting and characterizing gravitational wave echoes. Phys. Rev. D 98(2), 024023 (2018)

    Article  ADS  Google Scholar 

  13. A.B. Nielsen, C.D. Capano, O. Birnholtz, J. Westerweck, Parameter estimation and statistical significance of echoes following black hole signals in the first Advanced LIGO observing run. Phys. Rev. D 99(10), 104012 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  14. R.K.L. Lo, T.G.F. Li, A.J. Weinstein, Template-based gravitational-wave echoes search using Bayesian model selection. Phys. Rev. D 99(8), 084052 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  15. N. Uchikata, H. Nakano, T. Narikawa, N. Sago, H. Tagoshi, T. Tanaka, Searching for black hole echoes from the LIGO-Virgo catalog GWTC-1. Phys. Rev. D 100(6), 062006 (2019)

    Article  ADS  Google Scholar 

  16. S. Datta, R. Brito, S. Bose, P. Pani, S.A. Hughes, Tidal heating as a discriminator for horizons in extreme mass ratio inspirals. Phys. Rev. D 101, 044004 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  17. R. Abbott, et al., GWTC-3: Compact Binary Coalescences Observed by LIGO and Virgo During the Second Part of the Third Observing Run. arXiv e-prints arXiv:2111.03606 (2021)

  18. S.A. Teukolsky, Perturbations of a rotating black hole. I. Fundamental Equations for Gravitational, Electromagnetic, and Neutrino-Field Perturbations. ApJ, 185, 635–648 (1973)

  19. S. Bernuzzi, A. Nagar, Binary black hole merger in the extreme-mass-ratio limit: a multipolar analysis. Phys. Rev. D 81(8), 084056 (2010)

    Article  ADS  Google Scholar 

  20. W.B. Han, Z. Cao, Constructing effective one-body dynamics with numerical energy flux for intermediate-mass-ratio inspirals. Phys. Rev. D 84(4), 044014 (2011)

    Article  ADS  Google Scholar 

  21. M. Sasaki, T. Nakamura, Gravitational radiation from a Kerr Black Hole. I Formulation and a Method for Numerical Analysis. Progress of Theoretical Physics 67(6), 1788–1809 (1982)

  22. S.A. Hughes, Evolution of circular, nonequatorial orbits of Kerr black holes due to gravitational-wave emission. Phys. Rev. D 61(8), 084004 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  23. Y. Mino, M. Sasaki, M. Shibata, H. Tagoshi, T. Tanaka, Chapter 1 Black hole perturbation. Prog. Theor. Phys. Suppl. 128, 1–121 (1997)

  24. P.M. Sá, A.B. Henriques, Parametric resonance and cosmological gravitational waves. Phys. Rev. D 77(6), 064002 (2008)

    Article  ADS  Google Scholar 

  25. C. Cutler, É.E. Flanagan, Gravitational waves from merging compact binaries: How accurately can one extract the binary’s parameters from the inspiral waveform? Phys. Rev. D 49(6), 2658–2697 (1994)

    Article  ADS  Google Scholar 

  26. S. Babak, J. Gair, A. Sesana, E. Barausse, C.F. Sopuerta, C.P.L. Berry, E. Berti, P. Amaro-Seoane, A. Petiteau, A. Klein, Science with the space-based interferometer LISA. V. Extreme mass-ratio inspirals. Phys. Rev. D 95(10), 103012 (2017)

  27. J. Abedi, H. Dykaar, N. Afshordi, Echoes from the abyss: tentative evidence for Planck-scale structure at black hole horizons. Phys. Rev. D 96(8), 082004 (2017)

    Article  ADS  Google Scholar 

  28. G. Ashton, O. Birnholtz, M. Cabero, C. Capano, T. Dent, B. Krishnan, G.D. Meadors, A.B. Nielsen, A. Nitz, J. Westerweck, Comments on: “Echoes from the abyss: Evidence for Planck-scale structure at black hole horizons”. arXiv e-prints arXiv:1612.05625 (2016)

  29. J. Abedi, H. Dykaar, N. Afshordi, Echoes from the Abyss: The Holiday Edition! arXiv e-prints arXiv:1701.03485 (2017)

  30. J. Westerweck, A.B. Nielsen, O. Fischer-Birnholtz, M. Cabero, C. Capano, T. Dent, B. Krishnan, G. Meadors, A.H. Nitz, Low significance of evidence for black hole echoes in gravitational wave data. Phys. Rev. D 97(12), 124037 (2018)

    Article  ADS  Google Scholar 

  31. R.S. Conklin, B. Holdom, J. Ren, Gravitational wave echoes through new windows. Phys. Rev. D 98(4), 044021 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by The National Key R &D Program of China (No. 2021YFC2203002), NSFC No. 11773059 and No. 12173071, and the Strategic Priority Research Program of the CAS under Grants No. XDA15021102. W. H. is supported by CAS Project for Young Scientists in Basic Research YSBR-006. We thank Yanbei Chen, Shuo Xin, and Ling Sun for very useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Biao Han.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, XY., Han, WB., Jiang, Y. et al. Detecting properties of echoes from the inspiraling stage with ground-based detectors. Eur. Phys. J. Plus 138, 761 (2023). https://doi.org/10.1140/epjp/s13360-023-04398-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04398-z

Navigation