Skip to main content
Log in

Relation between the escort average in microcanonical ensemble and the escort average in canonical ensemble in the Tsallis statistics

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

This article has been updated

Abstract

We studied the escort averages in microcanonical and canonical ensembles in the Tsallis statistics of entropic parameter \(q>1\). The quantity \((q-1)\) is the measure of the deviation from the Boltzmann–Gibbs statistics. We derived the relation between the escort average in the microcanonical ensemble and the escort average in the canonical ensemble. Conditions arise by requiring that the integrals appeared in the canonical ensemble do not diverge. A condition is the relation between the heat capacity \(C_V^{\textrm{CE}}\) at constant volume in the canonical ensemble and the entropic parameter q: \(0< (q-1) C_V^{\textrm{CE}}< 1\). This condition gives the known condition when \(C_V^{\textrm{CE}}\) equals the number of ingredients N. With the derived relation, we calculated the energy, the energy fluctuation, and the difference between the canonical ensemble and the microcanonical ensemble in the expectation value of the square of Hamiltonian. The difference between the microcanonical ensemble and the canonical ensemble in energy is small because of the condition. The heat capacity \(C_V^{\textrm{CE}}\) and the quantity \((q-1)\) are related to the energy fluctuation and the difference. It was shown that the magnitude of the relative difference \(|(S^{\textrm{CE}}_{\textrm{R}q}-S^{\textrm{ME}}_{\textrm{R}q})/S^{\textrm{ME}}_{\textrm{R}q}|\) is small when the number of free particles is large, where \(S^{\textrm{ME}}_{\textrm{R}q}\) is the Rényi entropy in the microcanonical ensemble and \(S^{\textrm{CE}}_{\textrm{R}q}\) is the Rényi entropy in the canonical ensemble. The similar result was also obtained for the Tsallis entropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This study is theoretical, and no data is generated].

Change history

  • 27 July 2023

    References have been amended to correct journal name Phys. A to Physica A.

References

  1. C. Tsallis, “Introduction to Nonextensive Statistical Mechanics” (Springer, 2010)

  2. J.D. Castaño-Yepes and C.F. Ramirez-Gutierrez, “Superstatistics and quantum entanglement in the isotropic spin-1/2 \(XX\) dimer from a nonadditive thermodynamics perspective” [published erratum, Phys. Rev. E 104, 039903 (2012)], Phys. Rev. E 104, 024139 (2021). https://doi.org/10.1103/PhysRevE.104.024139

  3. A. Saha, S. Sanyal, Temperature fluctuations and Tsallis statistics in relativistic heavy ion collisions. Mod. Phys. Lett. A 36, 2150152 (2021). https://doi.org/10.1142/S0217732321501522

    Article  ADS  Google Scholar 

  4. E.T. Jaynes, Information theory and statistical mechanics. Phys. Rev. 106, 620 (1957). https://doi.org/10.1103/PhysRev.106.620

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. M. Ishihara, Derivation of density operators for generalized entropies with quantum analysis. Physica A 543, 123419 (2020). https://doi.org/10.1016/j.physa.2019.123419

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Ishihara, Derivation of the density operator with quantum analysis for the generalized Gibbs ensemble in quantum statistics. Physica A 583, 126321 (2021). https://doi.org/10.1016/j.physa.2021.126321

    Article  MathSciNet  MATH  Google Scholar 

  7. C. Tsallis, R.S. Mendes, A.R. Plastino, The role of constraints within generalized nonextensive statistics. Physica A 261, 534 (1998). https://doi.org/10.1016/S0378-4371(98)00437-3

    Article  ADS  Google Scholar 

  8. S. Martínez, F. Nicolás, F. Pennini, A. Plastino, Tsallis’ entropy maximization procedure revisited. Physica A 286, 489 (2000). https://doi.org/10.1016/S0378-4371(00)00359-9

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. K.-M. Shen, B.-W. Zhang, E.-K. Wang, Generalized ensemble theory with non-extensive statistics. Physica A 487, 215 (2017). https://doi.org/10.1016/j.physa.2017.06.030

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. S. Kalyana Rama “Tsallis statistics: averages and a physical interpretation of the Lagrange multiplier \(\beta\)”. Phys. Lett. A 276, 103 (2000). https://doi.org/10.1016/S0375-9601(00)00634-4

  11. S. Abe, S. Martinez, F. Pennini, A. Plastino, Nonextensive thermodynamic relations. Phys. Lett. A 281, 126 (2001). https://doi.org/10.1016/S0375-9601(01)00127-X

    Article  MATH  ADS  Google Scholar 

  12. S. Abe, Heat and entropy in nonextensive thermodynamics: transmutation from Tsallis theory to Rényi-entropy-based theory. Physica A 300, 417 (2001). https://doi.org/10.1016/S0378-4371(01)00348-X

    Article  MathSciNet  MATH  ADS  Google Scholar 

  13. H.H. Aragão-Rêgo, D.J. Soares, L.S. Lucena, L.R. da Silva, E.K. Lenzi,Kwok Sau Fa, “Bose–Einstein and Fermi-Dirac distributions in nonextensive Tsallis statistics: an exact study.” Physica A 317, 199 (2003). https://doi.org/10.1016/S0378-4371(02)01330-4

  14. E. Ruthotto, “Physical temperature and the meaning of the \(q\) parameter in Tsallis statistics”, arXiv:cond-mat/0310413. https://doi.org/10.48550/arXiv.cond-mat/0310413

  15. R. Toral, On the definition of physical temperature and pressure for nonextensive thermodynamics. Physica A 317, 209 (2003). https://doi.org/10.1016/S0378-4371(02)01313-4

    Article  MATH  ADS  Google Scholar 

  16. H. Suyari, The unique non self-referential \(q\)-canonical distribution and the physical temperature derived from the maximum entropy principle in Tsallis statistics. Prog. Theor. Phys. Suppl. 162, 79 (2006). https://doi.org/10.1143/PTPS.162.79

    Article  MATH  ADS  Google Scholar 

  17. M. Ishihara, Phase transition for the system of finite volume in the \(\phi ^4\) theory in the Tsallis nonextensive statistics. Int. J. Mod. Phys. A 33, 1850067 (2018). https://doi.org/10.1142/S0217751X18500677

    Article  MathSciNet  MATH  ADS  Google Scholar 

  18. M. Ishihara, Momentum distribution and correlation for a free scalar field in the Tsallis nonextensive statistics based on density operator. Eur. Phys. J. A 54, 164 (2018). https://doi.org/10.1140/epja/i2018-12601-8

    Article  ADS  Google Scholar 

  19. M. Ishihara, Thermodynamic relations and fluctuations in the Tsallis statistics. Eur. Phys. J. Plus 138, 241 (2023). https://doi.org/10.1140/epjp/s13360-023-03857-x

    Article  Google Scholar 

  20. I. Çimdiker, M.P. Da̧browski, H. Gohar, “Equilibrium temperature for black holes with nonextensive entropy’’. Eur. Phys. J. C 83, 169 (2023). https://doi.org/10.1140/epjc/s10052-023-11317-0

    Article  ADS  Google Scholar 

  21. T. Saso, “Toukei Rikigaku (Statistical Mechanics)” (Maruzen, 2010). Japanese

  22. E. Vives, A. Planes, Is Tsallis thermodynamic nonextensive? Phys. Rev. Lett. 88, 020601 (2002). https://doi.org/10.1103/PhysRevLett.88.020601

    Article  MathSciNet  ADS  Google Scholar 

  23. L. Liyan, D. Jiulin, Energy fluctuations and the ensemble equivalence in Tsallis statistics. Physica A 387, 5417 (2008). https://doi.org/10.1016/j.physa.2008.05.028

    Article  MathSciNet  ADS  Google Scholar 

  24. M. Ishihara, Thermodynamic quantities of independent harmonic oscillators in microcanonical and canonical ensembles in the Tsallis statistics. Eur. Phys. J. B 96, 13 (2023). https://doi.org/10.1140/epjb/s10051-023-00481-7

    Article  ADS  Google Scholar 

  25. G. Wilk, Z. Włodarczyk, Interpretation of the nonextensivity parameter \(q\) in some applications of Tsallis statistics and Lévy distributions. Phys. Rev. Lett. 84, 2770 (2000). https://doi.org/10.1103/PhysRevLett.84.2770

    Article  ADS  Google Scholar 

  26. M. Ishihara, Effects of the Tsallis distribution in the linear sigma model. Int. J. Mod. Phys. E 24, 1550085 (2015). https://doi.org/10.1142/S0218301315500858

    Article  ADS  Google Scholar 

  27. M. Ishihara, Chiral phase transitions in the linear sigma model in the Tsallis nonextensive statistics. Int. J. Mod. Phys. E 25, 1650066 (2016). https://doi.org/10.1142/S021830131650066X

    Article  ADS  Google Scholar 

  28. T. Bhattacharyya, J. Cleymans, S. Mogliacci, Analytic results for the Tsallis thermodynamic variables. Phys. Rev. D 94, 094026 (2016). https://doi.org/10.1103/PhysRevD.94.094026

    Article  ADS  Google Scholar 

  29. T. Bhattacharyya, J. Cleymans, L. Marques, S. Mogliacci, M.W. Paradza, On the precise determination of the Tsallis parameters in proton-proton collisions at LHC energies. J. Phys. G Nucl. Part. Phys. 45, 055001 (2018). https://doi.org/10.1088/1361-6471/aaaea0

    Article  ADS  Google Scholar 

  30. S. Abe, Stability of Tsallis entropy and instabilities of Rényi and normalized Tsallis entropies: a basis for q-exponential distributions. Phy. Rev. E 66, 046134 (2002). https://doi.org/10.1103/PhysRevE.66.046134

    Article  ADS  Google Scholar 

  31. L.G. Moyano, C. Tsallis, M. Gell-Mann, Numerical indications of a q-generalized central limit theorem. Europhys. Lett. 73, 813 (2006). https://doi.org/10.1209/epl/i2005-10487-1

    Article  MathSciNet  ADS  Google Scholar 

  32. E.S.R. Gopal, “Specific Heats at Low Temperatures” (Plenum Press, 1966)

  33. E. Miyazaki, “Chemical Thermodynamics for College Students” (Shokabo, 2000). Japanese

  34. M. Ishihara, Thermodynamics of the independent harmonic oscillators with different frequencies in the Tsallis statistics in the high physical temperature approximation. Eur. Phys. J. B 95, 53 (2022). https://doi.org/10.1140/epjb/s10051-022-00309-w

    Article  ADS  Google Scholar 

  35. R.B. Shirts, A comparison of Boltzmann and Gibbs definitions of microcanonical entropy for small systems. AIP Adv. 11, 125023 (2021). https://doi.org/10.1063/5.0073086

    Article  ADS  Google Scholar 

  36. T. Wada, Model-free derivations of the Tsallis factor: constant heat capacity derivation. Phys. Lett. A 318, 491 (2003). https://doi.org/10.1016/j.physleta.2003.09.056

    Article  MathSciNet  MATH  ADS  Google Scholar 

  37. G. Wilk, Z. Włodarczyk, Power laws in elementary and heavy ion collisions. Eur. Phys. J. A 40, 299 (2009). https://doi.org/10.1140/epja/i2009-10803-9

    Article  ADS  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masamichi Ishihara.

Ethics declarations

Conflict of interest

The author declares no competing interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishihara, M. Relation between the escort average in microcanonical ensemble and the escort average in canonical ensemble in the Tsallis statistics. Eur. Phys. J. Plus 138, 614 (2023). https://doi.org/10.1140/epjp/s13360-023-04254-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04254-0

Navigation