Skip to main content
Log in

A mathematical study of the omicron variant in a discrete-time Covid-19 model

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The Covid-19 virus group is one of the most groups of viruses that influenced the life of mankind in the past twenty years. A review of previous models was presented. In this work, we fill the gap in the literature by proposing a discrete-time epidemic model by applying the backward difference scheme to the Omicron variant. In this paper, the authors modeled the spread of Covid-19 mutation variants data from South Africa. This work uses a mathematical model SEAIOH to describe Covid-19 Omicron spreading. Moreover, the analysis of the proposed model is proven for both local and global stability. Thus, the numerical and discussion results align with the analysis theory. According to the proposed model, the dynamical behavior analysis of nodes at each compartment helps to find relations between pandemic and endemic cases. This leads to set protection rules and decreases the number of infected individuals. Furthermore, our results might contribute to public health policy improvements to prevent the spread of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

No Data associated in the manuscript.

References

  1. J. Khan, K. Mclntosh, History and recent advances in coronavirus discovery. Pediatr. Infect. Dis. J. 24, 16378050 (2005)

    Google Scholar 

  2. World, Statement on the first meeting of the international health regulations (2005) emergency committee regarding the outbreak of novel coronavirus (2019-ncov), Jan (2020)

  3. Z. Zhu, X. Lian, X. Su, W. Wu, G.A. Marraro, Y. Zeng, From SARS and MERS to covid-19: a brief summary and comparison of severe acute respiratory infections caused by three highly pathogenic human coronaviruses. Respirat. Res. 21(1), 1–14 (2020)

    Article  Google Scholar 

  4. Tracking sars-cov-2 variants. https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/. (Accessed on 06/14/2023)

  5. T. Davenport, Big data at work: dispelling the myths, uncovering the opportunities (Harvard Business Review Press, New York City, 2014)

    Book  Google Scholar 

  6. K.K. Singh, S. Kumar, P. Dixit, M.K. Bajpai, Kalman filter based short term prediction model for covid-19 spread. Appl. Intell. 51(5), 2714–2726 (2021)

    Article  Google Scholar 

  7. C. Nowzari, V.M. Preciado, G.J. Pappas, Analysis and control of epidemics: a survey of spreading processes on complex networks. IEEE Contr. Syst. Magaz. 36(1), 26–46 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. M. Al-arydah, H. Berhe, K. Dib, K. Madhu, Mathematical modeling of the spread of the coronavirus under strict social restrictions. Math. Meth. Appl. Sci. (2021). https://doi.org/10.1002/mma.7965

    Article  Google Scholar 

  9. H. Alrabaiah, M.A. Safi, M.H. DarAssi, B. Al-Hdaibat, S. Ullah, M.A. Khan, S.A.A. Shah, Optimal control analysis of hepatitis b virus with treatment and vaccination. Results Phys. 19, 103599 (2020)

    Article  Google Scholar 

  10. C.T. Bauch, J.O. Lloyd-Smith, M.P. Coffee, A.P. Galvani, Dynamically modeling SARS and other newly emerging respiratory illnesses: past, present, and future. Epidemiology 16(6), 791–801 (2005)

    Article  Google Scholar 

  11. Y. Bechah, C. Capo, J.-L. Mege, D. Raoult, Epidemic typhus. Lancet Infect. Dis. 8(7), 417–426 (2008)

    Article  Google Scholar 

  12. M.H. DarAssi, M.A. Safi, B. Al-Hdaibat, A delayed SEIR epidemic model with pulse vaccination and treatment. Nonlinear Stud. 25(3), 521–534 (2018)

    MathSciNet  MATH  Google Scholar 

  13. M.H. DarAssi, M.A. Safi, M. Ahmad, Global dynamics of a discrete-time MERS-COV model. Mathematics 9(5), 563 (2021)

    Article  Google Scholar 

  14. M. DarAssi, M. Safi, Analysis of an sirs epidemic model for a disease geographic spread. Nonlinear Dynam. Syst. Theory 21(1), 56–67 (2021)

    MathSciNet  MATH  Google Scholar 

  15. M.H. DarAssi, M.A. Safi, M.A. Khan, A. Beigi, A.A. Aly, M.Y. Alshahrani, A mathematical model for SARS-COV-2 in variable-order fractional derivative. Eur. Phys. J. Special Topics (2022). https://doi.org/10.1140/epjs/s11734-022-00458-0

    Article  Google Scholar 

  16. M.H. DarAssi, T.A. Shatnawi, M.A. Safi, Mathematical analysis of a MERS-COV coronavirus model. Demonst. Math. 55(1), 265–276 (2022)

    MathSciNet  MATH  Google Scholar 

  17. O. Diekmann, J.A.P. Heesterbeek, Mathematical epidemiology of infectious diseases: model building, analysis and interpretation, vol. 5 (Wiley, Hobroken, 2000)

    MATH  Google Scholar 

  18. M. Altaf Khan, K. Khan, M.A. Safi, M.H. DarAssi, A discrete model of tb dynamics in khyber pakhtunkhwa-pakistan. Comput. Model Eng. Sci. 123(2), 777–795 (2020)

    Google Scholar 

  19. J.D. Murray, Mathematical biology: I An introduction (Springer, Berlin, 2002)

    Book  MATH  Google Scholar 

  20. M.A. Safi, M.H. DarAssi, Mathematical analysis of a model for ectoparasite-borne diseases. Math. Meth. Appl. Sci. 41(17), 8248–8257 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. M.A. Safi, M.H. DarAssi, Mathematical analysis of an age-structured HSV-2 model. J. Comput. Meth. Sci. Eng. 19(3), 841–856 (2019)

    Google Scholar 

  22. M.A. Safi, B. Al-Hdaibat, M.H. DarAssi, M.A. Khan, Global dynamics for a discrete quarantine/isolation model. Results Phys. 21, 103788 (2021)

    Article  Google Scholar 

  23. A. Nutini, J. Zhang, A. Sohail, R. Arif, T.A. Nofal, Forecasting of the efficiency of monoclonal therapy in the treatment of covid-19 induced by the omicron variant of sars-cov2. Results Phys. 35, 105300 (2022)

    Article  Google Scholar 

  24. T. Li, Y. Guo, Optimal control and cost-effectiveness analysis of a new covid-19 model for omicron strain. Physica A: Stat. Mech. Appl. 606, 128134 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  25. T. Hussein, M.H. Hammad, O. Surakhi, M. AlKhanafseh, P.L. Fung, M.A. Zaidan, D. Wraith, N. Ershaidat, Short-term and long-term covid-19 pandemic forecasting revisited with the emergence of omicron variant in Jordan. Vaccines 10(4), 569 (2022)

    Article  Google Scholar 

  26. M.A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus (2019-NCOV) with fractional derivative. Alexandria Eng. J. 59(4), 2379–2389 (2020)

    Article  Google Scholar 

  27. A. Hassan, D. Prasad, S. Rani, M. Alhassan, Gauging the impact of artificial intelligence and mathematical modeling in response to the covid-19 pandemic: a systematic review. BioMed Res. Int. (2022). https://doi.org/10.1155/2022/7731618

    Article  Google Scholar 

  28. X.-P. Li, M.H. DarAssi, M.A. Khan, C. Chukwu, M.Y. Alshahrani, M.A. Shahrani, M.B. Riaz, Assessing the potential impact of covid-19 omicron variant: insight through a fractional piecewise model. Results Phys. 38, 105652 (2022)

    Article  Google Scholar 

  29. B.-G. Wang, Z.-C. Wang, Y. Wu, Y. Xiong, J. Zhang, Z. Ma, A mathematical model reveals the influence of npis and vaccination on sars-cov-2 omicron variant, Nonlinear Dynamics, pp. 1–16, (2022)

  30. C. Xu, M. Farman, A. Hasan, A. Akgül, M. Zakarya, W. Albalawi, C. Park, Lyapunov stability and wave analysis of covid-19 omicron variant of real data with fractional operator. Alexandria Eng. J. 61(12), 11787–11802 (2022)

    Article  Google Scholar 

  31. M. Cai, G. Em Karniadakis, C. Li, Fractional SEIR model and data-driven predictions of covid-19 dynamics of omicron variant. Chaos Interdisc. J. Nonlin. Sci. 32(7), 071101 (2022)

    Article  MathSciNet  Google Scholar 

  32. J. A. Al-Tawfiq, V.-T. Hoang, N. Le Bui, D.-T. Chu, Z. A. Memish, The emergence of the omicron (b. 1.1. 529) sars-cov-2 variant: what is the impact on the continued pandemic? (2022)

  33. R. U. Khan, A. U. Haq, S. M. Hussain, S. Ullah, S. Almakdi, R. Kumar, H. H. Shah, J. Li, Analyzing and battling the emerging variants of covid-19 using artificial neural network and blockchain, In: 2021 18th International computer conference on wavelet active media technology and information processing (ICCWAMTIP), pp. 101–105, IEEE (2021)

  34. M.T. Sofonea, B. Roquebert, V. Foulongne, D. Morquin, L. Verdurme, S. Trombert-Paolantoni, M. Roussel, J.-C. Bonetti, J. Zerah, S. Haim-Boukobza et al., Analyzing and modeling the spread of sars-cov-2 omicron lineages ba. 1 and ba. 2, France, September 2021-February 2022. Emerg. Infect. Dis. 28(7), 1355 (2022)

    Article  Google Scholar 

  35. C. Chen, X. Zijie, X. Yonghui, R. Tiong, Ensuring sufficient cabin hospital beds for curbing the spread of covid-19-findings from petri net analysis. Heliyon (2022). https://doi.org/10.1016/j.heliyon.2022.e11202

    Article  Google Scholar 

  36. K. M. Alakkari, P. Mishra, D. Rawat, M. Abotaleb, A. M. Ghazi, Using ETS state space model for forecasting on third wave on covid19 in India (2022)

  37. D. Ghosh, P. Santra, G. Mahapatra, A. Elsonbaty, A. Elsadany, A discrete-time epidemic model for the analysis of transmission of covid19 based upon data of epidemiological parameters. Eur. Phys. J. Special Topics (2022). https://doi.org/10.1140/epjs/s11734-022-00537-2

    Article  Google Scholar 

  38. A. Tomar, N. Gupta, Prediction for the spread of covid-19 in India and effectiveness of preventive measures. Sci. Total Environ. 728, 138762 (2020)

    Article  ADS  Google Scholar 

  39. Y. Zheng, Y. Wang, Transmission characteristics and predictive model for recent epidemic waves of covid-19 associated with omicron variant in major cities in China. Int. J. Public Health (2022). https://doi.org/10.3389/ijph.2022.1605177

    Article  Google Scholar 

  40. Q. Deng 2022 Modeling the omicron dynamics and development in china: with a deep learning enhanced compartmental model, medRxiv, pp. 2022–06 (2022)

  41. R. Browning, D. Sulem, K. Mengersen, V. Rivoirard, J. Rousseau, Simple discrete-time self-exciting models can describe complex dynamic processes: a case study of covid-19. PloS one 16(4), e0250015 (2021)

    Article  Google Scholar 

  42. L.E. Brandao, J.S. Dyer, Decision analysis and real options: a discrete time approach to real option valuation. Annals Operat Res 135, 21–39 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  43. R.M. Anderson, R.M. May, Population biology of infectious diseases: part i. Nature 280(5721), 361–367 (1979)

    Article  ADS  Google Scholar 

  44. O. Diekmann, J.A.P. Heesterbeek, J.A. Metz, On the definition and the computation of the basic reproduction ratio r0 in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28(4), 365–382 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  45. P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci. 180(1–2), 29–48 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  46. H.W. Hethcote, The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653 (2000)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  47. J. LaSalle, “The stability of dynamical systems, society for industrial and applied mathematics, philadelphia, pa., 1976,” in With an appendix:“Limiting equations and stability of nonautonomous ordinary differential equations” by Z. Artstein, Regional Conference Series in Applied Mathematics, (1976)

  48. Share of SARS-CoV-2 sequences that are the omicron variant.

  49. A. Muniyappan, B. Sundarappan, P. Manoharan, M. Hamdi, K. Raahemifar, S. Bourouis, V. Varadarajan, Stability and numerical solutions of second wave mathematical modeling on covid-19 and omicron outbreak strategy of pandemic: Analytical and error analysis of approximate series solutions by using hpm. Mathematics 10(3), 343 (2022)

    Article  Google Scholar 

  50. Open government data (ogd) platform india or data.gov.in (2020)

  51. Coronavirus disease 2019 (covid-19): who situation report (2020), (2020)

  52. Dedicated covid facilities status-333 (2023)

  53. Stopcoronatn - health & family welfare department, government of Tamilnadu (2023)

  54. S. Mallakpour, E. Azadi, C. M. Hussain, Fabrication of air filters with advanced filtration performance for removal of viral aerosols and control the spread of covid-19, Advances in Colloid and Interface Science, p. 102653, (2022)

  55. J.T. Brooks, J.C. Butler, Effectiveness of mask wearing to control community spread of SARS-COV-2. Jama 325(10), 998–999 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud H. DarAssi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DarAssi, M.H., Damrah, S. & AbuHour, Y. A mathematical study of the omicron variant in a discrete-time Covid-19 model. Eur. Phys. J. Plus 138, 601 (2023). https://doi.org/10.1140/epjp/s13360-023-04233-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04233-5

Navigation