Skip to main content
Log in

Quantum speed of evolution of neutral mesons

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We investigate the quantum-mechanical time-evolution speed limit for neutral K and B mesons, both single as well as correlated, within the framework of open quantum systems. The role of coherence–mixing, a crucial feature of the open system evolution of the underlying quantum systems (here, the mesons), on the quantum-mechanical time-evolution speed limit is studied. The impact of decoherence and CP (charge conjugation parity) symmetry violation on quantum-mechanical time-evolution speed limit is also investigated. The quantum-mechanical time-evolution speed limit increases with the evolution time for the single mesons, a signature of the underlying open system dynamics of the evolution being semi-group in nature. The evolution of the correlated mesons slows down for an evolution time of approximately one-fourth of the lifetime, after which it is sped up. An overall pattern that emerges is that correlated mesons evolve faster, as compared to their uncorrelated counterparts, suggesting that quantum correlations can speed up evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

The manuscript has no associated data.

References

  1. A. Bramon, G. Garbarino, Phys. Rev. Lett. 88, 040403 (2002)

    Article  Google Scholar 

  2. A. Bramon, G. Garbarino, Phys. Rev. Lett. 89, 160401 (2002)

    Article  Google Scholar 

  3. R.A. Bertlmann, K. Durstberger, B.C. Hiesmayr, Phys. Rev. A 68, 012111 (2003)

    Article  Google Scholar 

  4. A. Bramon, G. Garbarino, B.C. Hiesmayr, Phys. Rev. A 69, 062111 (2004)

    Article  Google Scholar 

  5. B.C. Hiesmayr, Eur. Phys. J. C 50, 73 (2007)

    Article  Google Scholar 

  6. A. Go et al., Belle collaboration. Phys. Rev. Lett. 99, 131802 (2007)

    Article  Google Scholar 

  7. G. Amelino-Camelia, F. Archilli, D. Babusci, D. Badoni, G. Bencivenni, J. Bernabeu, R.A. Bertlmann, D.R. Boito et al., Eur. Phys. J. C 68, 619 (2010)

    Article  Google Scholar 

  8. B.C. Hiesmayr, A. Di Domenico, C. Curceanu, A. Gabriel, M. Huber, J.A. Larsson, P. Moskal, Eur. Phys. J. C 72, 1856 (2012)

    Article  Google Scholar 

  9. A. Bramon, R. Escribano, G. Garbarino, A review of Bell inequality tests with neutral kaons, in Handbook on Neutral Kaon Interferometry at a\(\Phi\)-factory. ed. by A. Di (XLIII, Domenico, 2007), pp.217–254

  10. M. Blasone, F. DellAnno, S. De Siena, F. Illuminati, Euro. Phys. Lett. 85, 50002 (2009)

    Article  Google Scholar 

  11. S. Banerjee, A.K. Alok, R. Srikanth, B.C. Hiesmayr, Eur. Phys. J. C 75(10), 487 (2015)

    Article  Google Scholar 

  12. A.K. Alok, S. Banerjee, S.U. Sankar, Nucl. Phys. B 909, 65 (2016)

    Article  Google Scholar 

  13. B. Kerbikov, Nucl. Phys. A 975, 59 (2018)

    Article  Google Scholar 

  14. M. Richter-Laskowska, M. Lobejko, J. Dajka, New J. Phys. 20, 063040 (2018)

    Article  Google Scholar 

  15. K. Dixit, A.K. Alok, S. Banerjee, Eur. Phy. J. C. 78, 914 (2018)

    Article  Google Scholar 

  16. K. Dixit, J. Naikoo, B. Mukhopadhyay, S. Banerjee, Phys. Rev. D 100, 055021 (2019)

    Article  MathSciNet  Google Scholar 

  17. J. Naikoo, A. K. Alok, S. Banerjee, S. Uma Sankar, G. Guarnieri, C. Schultze, B. C. Hiesmayr, Nucl. Phys. B 951, 114872 (2020)

    Article  Google Scholar 

  18. J. Naikoo, A.K. Alok, S. Banerjee, Phys. Rev. D 97, 053008 (2018)

    Article  Google Scholar 

  19. J. Naikoo, S. Banerjee, Eur. Phys. J. C 78, 602 (2018)

    Article  Google Scholar 

  20. J. Naikoo, A. K. Alok, S. Banerjee, S. Uma Sankar, Phys. Rev. D 99, 095001 (2019)

    Article  Google Scholar 

  21. J. Naikoo, S. Kumari, S. Banerjee, A.K. Pan, J. Phys. G: Nucl. Part. Phys. 47, 095004 (2020)

    Article  Google Scholar 

  22. K. Dixit, J. Naikoo, S. Banerjee, A.K. Alok, Eur. Phys. J. C 79, 96 (2019)

    Article  Google Scholar 

  23. K. Dixit, S. Banerjee, A.K. Alok, D. Kumar, J. Phys. G 45(8), 085002 (2018)

    Article  Google Scholar 

  24. B. Mukhopadhyay, S.K. Ganguly, Universe 6, 160 (2020)

    Article  Google Scholar 

  25. P. Mehta, Phys. Rev. D 79, 096013 (2009)

    Article  Google Scholar 

  26. J. Dajka, J. Syska, J. Luczka, Phys. Rev. D 83, 097302 (2011)

    Article  Google Scholar 

  27. A. Capolupo, S.M. Giampaolo, B.C. Hiesmayr, G. Vitiello, Phys. Lett. B 780, 216 (2018)

    Article  Google Scholar 

  28. L. Johns, G.M. Fuller, Phys. Rev. D 95(4), 043003 (2017)

    Article  Google Scholar 

  29. J. Lu, Phys. Lett. B 818, 136376 (2021)

    Article  Google Scholar 

  30. B. Yadav, T. Sarkar, K. Dixit, A.K. Alok, Eur. Phys. J. C 82, 446 (2022)

    Article  Google Scholar 

  31. J.R. Ellis, N.E. Mavromatos, D.V. Nanopoulos, Phys. Lett. B 293, 37 (1992)

    Article  MathSciNet  Google Scholar 

  32. A.K. Alok, S. Banerjee, Phys. Rev. D 88, 094013 (2013)

    Article  Google Scholar 

  33. Subhashish. Banerjee, Ashutosh Kumar. Alok, Richard. MacKenzie, Eur. Phys. J. Plus 131, 5 (2016)

  34. A. K. Alok, S. Banerjee, S. Uma Sankar, Phys. Lett. B 94, 749 (2015)

    Google Scholar 

  35. J.R. Ellis, J.S. Hagelin, D.V. Nanopoulos, M. Srednicki, Nucl. Phys. B 241, 381 (1984)

    Article  Google Scholar 

  36. T. Banks, L. Susskind, M.E. Peskin, Nucl. Phys. B 244, 125 (1984)

    Article  Google Scholar 

  37. N. Mavromatos, S. Sarkar, Phys. Rev. D 72, 065016 (2005)

    Article  Google Scholar 

  38. L. Mandelstam, I. Tamm, J. Phys. 9, 249 (1945)

    Google Scholar 

  39. J. Anandan, Y. Aharonov, Phys. Rev. Lett. 65, 1697 (1990)

    Article  MathSciNet  Google Scholar 

  40. N. Margolus, L.B. Levitin, Phys. D: Nonlinear Phenom. 120, 188 (1998)

    Article  Google Scholar 

  41. Srishty Aggarwal, Subhashish Banerjee, Arindam Ghosh, Banibrata Mukhopadhyay, New J. Phys. 24, 085001 (2022)

    Article  Google Scholar 

  42. H.P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Great Clarendon Street, 2002)

    MATH  Google Scholar 

  43. P. Caban, J. Rembieliński, K.A. Smoliński, Z. Walczak, Phys. Rev. A 72, 032106 (2005)

    Article  MathSciNet  Google Scholar 

  44. S. Banerjee, Open Quantum Systems: Dynamics of Nonclassical Evolution (Springer, Berlin, 2018)

    Book  MATH  Google Scholar 

  45. S. Deffner, E. Lutz, Phys. Rev. Lett. 111, 010402 (2013)

    Article  Google Scholar 

  46. A. del Campo, I.L. Egusquiza, M.B. Plenio, S.F. Huelga, Phys. Rev. Lett. 110, 050403 (2013)

    Article  Google Scholar 

  47. S. Deffner, S. Campbell, J. Phys. A: Math. Theor. 50, 453001 (2017)

    Article  Google Scholar 

  48. D.P. Pires, M. Cianciaruso, L.C. Céleri, G. Adesso, D.O. Soares-Pinto, Phys. Rev. X 6(2), 021031 (2016)

    Google Scholar 

  49. R. Baruah, K.G. Paulson, S. Banerjee, Annalen der Physik 535, 2200199 (2022)

    Article  Google Scholar 

  50. Eoin O’Connor, Giacomo Guarnieri, Steve Campbell, Phys. Rev. A 103, 022210 (2021)

    Article  Google Scholar 

  51. Y.B. Wei, J. Zou, Z.M. Wang, B. Shao, Sci. Rep. 6, 19308 (2016)

    Article  Google Scholar 

  52. K.G. Paulson, E. Panwar, S. Banerjee, R. Srikanth, Quantum Inf. Process. 20, 141 (2021)

    Article  Google Scholar 

  53. K.G. Paulson, S. Banerjee, J. Phys. A: Math. Theor. 55(50), 505302 (2022)

    Article  Google Scholar 

  54. D. Tiwari, K. G. Paulson, S. Banerjee, Annalen der Physik, 2200452 (2023)

  55. V. Weisskopf, E.P. Wigner, Z. Phys. 63, 54 (1930)

    Article  Google Scholar 

  56. R.E. Peierls, Proc. R. Soc. Lond. 253A, 16 (1960)

    Google Scholar 

  57. L. Khalfin, Sov. Phys. JETP 6, 1053 (1958)

    Google Scholar 

  58. L. Khalfin, Sov. JETP Lett. 8, 65 (1968)

    Google Scholar 

  59. T. Petrosky, I. Prigogine, Proc. Nat. Acad. Sci. U. S. A. 93, 9393 (1993)

    Article  Google Scholar 

  60. E. C. G. Sudarshan, Charles B. Chiu, G. Bhamathi, Advances in Chemical Physics XCIX, Wiley, Hoboken, pp. 121-210, (1997)

  61. J.R. Ellis, N.E. Mavromatos, D.V. Nanopoulos, Phys. Lett. B 293, 142 (1992)

    Article  Google Scholar 

  62. P. Huet, M.E. Peskin, Nucl. Phys. B 434, 3 (1995)

    Article  Google Scholar 

  63. F. Benatti, R. Floreanini, R. Romano, Nucl. Phys. B 602, 541 (2001)

    Article  Google Scholar 

  64. K. Urbanowski, Open Syst. Inf. Dyn. 20, 1340008 (2013)

    Article  MathSciNet  Google Scholar 

  65. M. Fabbrichesi, R. Floreanini, G. Panizzo, Phys. Rev. Lett. 127, 161801 (2021)

    Article  Google Scholar 

  66. A. Weron, A.K. Rajagopal, K. Weron, Phys. Rev. A 31, 1736 (1985)

    Article  MathSciNet  Google Scholar 

  67. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    Article  Google Scholar 

  68. K. Modi, A. Brodutch, H. Cable, T. Paterek, V. Vedral, Rev. Mod. Phys. 84, 1655 (2012)

    Article  Google Scholar 

  69. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Rev. Mod. Phys. 74, 145 (2002)

    Article  Google Scholar 

  70. R. Raussendorf, H.J. Briegel, Phys. Rev. Lett. 86, 5188 (2001)

    Article  Google Scholar 

  71. H.J. Briegel, D.E. Browne, W. Dur, R. Raussendorf, M. Van den Nest, Nat. Phys. 5, 19 (2009)

    Article  Google Scholar 

  72. B. Ancochea, A. Bramon, M. Nowakowski, Phys. Rev. D 60, 094008 (1999)

    Article  Google Scholar 

  73. A. Di Domenico et al., Found. Phys. 42, 778 (2012)

    Article  MathSciNet  Google Scholar 

  74. U. Singh, M.N. Bera, H.S. Dhar, A.K. Pati, Phys. Rev. A 91, 052115 (2015)

    Article  Google Scholar 

  75. S. Bhattacharya, S. Banerjee, A.K. Pati, Quantum Inf. Process. 17, 1 (2018)

    Article  MathSciNet  Google Scholar 

  76. J.R. Ellis, N. Mavromatos, D.V. Nanopoulos, Int. J Mod. Phys. A 13, 1059 (1998)

    Article  Google Scholar 

  77. N.E. Mavromatos, S. Sarkar, Phys. Rev. D 74, 036007 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

SB acknowledges the support from the Interdisciplinary Cyber-Physical Systems (ICPS) program of the Department of Science and Technology (DST), India, Grant No.: DST/ICPS/QuST/Theme-1/2019/6. SB also acknowledges support from the Interdisciplinary Research Platform (IDRP) on Quantum Information and Computation (QIC) at IIT Jodhpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Paulson.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, S., Paulson, K.G. Quantum speed of evolution of neutral mesons. Eur. Phys. J. Plus 138, 597 (2023). https://doi.org/10.1140/epjp/s13360-023-04228-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04228-2

Navigation