Skip to main content
Log in

Microdestructive analysis with Py-GC/MS for the identification of birch tar: a case study from the Huayang site in late Neolithic China

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The use of birch tar has a long history, and its remains are found worldwide, especially in Europe, but few remains are found in Asia. Common characterization methods include gas chromatography/mass spectrometry (GC/MS), direct exposure electron ionization mass spectrometry (DE-MS) and pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Py-GC/MS requires no solvent extraction, less sample than GC/MS, and no statistical analysis compared to DE-MS. However, Py-GC/MS has been rarely applied to identify birch tar because some critical characteristic molecules of birch tar were not identified. In this study, we first reported some biomarkers of birch tar that could be identified by Py-GC/MS in terms of analyzing modern birch tar. Then, the analysis criteria were used to analyze archaeological samples adhered to stone artifacts from a late Neolithic site (about 4000 BP) in northeast China. The results provide the earliest evidence of the exploitation of birch tar in northeast Asia up to date.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are in the article and the Supplementary Information.

References

  1. E. Vogt, PPS 15, 50 (1949)

    Google Scholar 

  2. J.M. Grünberg, Antiquity 76, 15 (2002)

    Article  Google Scholar 

  3. W. Roebroeks, P. Villa, Proc. Natl. Acad. Sci. USA 108, 5209 (2011)

    Article  ADS  Google Scholar 

  4. J. Koller, U. Baumer, D. Mania, EJA 4, 385 (2001)

    Article  Google Scholar 

  5. F. Modugno, E. Ribechini, M.P. Colombini, Rapid Commun Mass Sp. 20, 1787 (2006)

    Article  Google Scholar 

  6. M. Rageot et al., J Archaeol Sci. 126, 105309 (2021)

    Article  Google Scholar 

  7. R.P. Evershed, Archaeometry 50, 895 (2008)

    Article  Google Scholar 

  8. A. Lucquin, R.J. March, S. Cassen, J. Archaeol. Sci. 34, 704 (2007)

    Article  Google Scholar 

  9. H. Rao et al., Veg. Hist. Archaeobotany 28, 199 (2019)

    Article  Google Scholar 

  10. M. Regert et al., Antiquity 93, 1553 (2019)

    Article  Google Scholar 

  11. R.J. Stacey et al., J. Archaeol. Sci. Rep. 29, 102118 (2020)

    Google Scholar 

  12. R. Stacey, Past 47, 1 (2004)

    Google Scholar 

  13. B. Courel et al., J. Archaeol. Sci. Rep. 20, 72 (2018)

    Google Scholar 

  14. M. Regert et al., Anc. Biomol. 2, 81 (1998)

    Google Scholar 

  15. S. Vahur, A. Kriiska, I. Leito, Estonian J. Archaeol. 15, 3 (2011)

    Article  Google Scholar 

  16. S. Charters et al., Archaeometry 35, 91 (1993)

    Article  Google Scholar 

  17. E.M. Aveling, C. Heron, Antiquity 73, 579 (1999)

    Article  Google Scholar 

  18. M. Regert et al., Archaeometry 45, 101 (2003)

    Article  Google Scholar 

  19. M.P. Colombini et al., Stud. Conserv. 45, 19 (2000)

    Google Scholar 

  20. E.W.H. Hayek et al., Anal. Chem. 62, 2038 (1990)

    Article  Google Scholar 

  21. E.W.H. Hayek et al., Fresenius J. Anal. Chem. 340, 153 (1991)

    Article  Google Scholar 

  22. M. Reunanen, B. Holmbom, T. Edgren, Holzforschung 47, 175 (1993)

    Article  Google Scholar 

  23. J. Trąbska et al., Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 79, 824 (2011)

    Article  ADS  Google Scholar 

  24. R. Nakamura, M. Naruse, J. C. Herit. 18, 355 (2016)

    Article  Google Scholar 

  25. S. Pietrzak, J.J. Langer, Folia Praehist. Posnanien. 17, 333 (2012)

    Google Scholar 

  26. M. Regert, C. Rolando, Anal. Chem. 74, 9654 (2002)

    Article  Google Scholar 

  27. E. Aveling, C. Heron, Anc. Biomol. 2, 69 (1998)

    Google Scholar 

  28. P.P.A. Mazza et al., J. Archaeol. Sci. 33, 1310 (2006)

    Article  Google Scholar 

  29. M. Regert et al., J. Chromatogr. A 1101, 245 (2006)

    Article  Google Scholar 

  30. E. Ribechini et al., J. Anal. Appl. Pyrol. 91, 219 (2011)

    Article  Google Scholar 

  31. M.J.L.T. Niekus et al., Proc. Natl. Acad. Sci. USA 116, 22081 (2019)

    Article  ADS  Google Scholar 

  32. D. Cnuts, S. Tomasso, V. Rots, J. Archaeol. Method Th. 25, 839 (2018)

    Article  Google Scholar 

  33. T.J. Koch, P. Schmidt, Sci. Rep. UK 12, 413 (2022)

    Article  ADS  Google Scholar 

  34. P. Schmidt et al., Proc. Natl. Acad. Sci. USA 116, 17707 (2019)

    Article  ADS  Google Scholar 

  35. Y. Li, Steppe C. Relics 1, 62 (2016)

    Google Scholar 

  36. J.P. Yue, Y.Q. Li, S.X. Yang, Antiquity 93, 1 (2019)

    Article  Google Scholar 

  37. W. Piotrowski and W. Brzezinski, Proceedings of the First International Symposium on Wood tar and Pitch. (State Archaeological Museum Warszawa, 1997)

  38. E.W. Tegelaar et al., Org Geochem. 23, 239 (1995)

    Article  ADS  Google Scholar 

  39. M. Regert, et al., BAR. 78 (2001)

  40. Q. Lu et al., J. Anal. Appl. Pyrol. 92, 430 (2011)

    Article  Google Scholar 

  41. M. Regert, J. Sep. Sci. 27, 244 (2004)

    Article  Google Scholar 

  42. V.V. Grishko, E.V. Tarasova, I.B. Ivshina, Process. Biochem. 48, 1640 (2013)

    Article  Google Scholar 

  43. M. Rageot et al., J. Archaeol. Method Th. 26, 276 (2019)

    Article  Google Scholar 

  44. M.P. Colombini, F. Modugno, Organic mass spectrometry in art and archaeology (Wiley, New York, 2009)

    Book  Google Scholar 

  45. M. Regert et al., Meas. Sci. Technol. 14, 1620 (2003)

    Article  Google Scholar 

  46. L. Wadley, CurrAnthr. 51, S111 (2010)

    Google Scholar 

  47. H. Hu and L. Ju, Sci. Silvae Sinicae. 44 (2008)

Download references

Acknowledgements

This study was supported by the National Key R&D Program of China (2022YFF0903800), the National Natural Science Foundation of China (42072217), the National Social Science Foundation of China (19BKG009), and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youqian Li or Yimin Yang.

Ethics declarations

Conflict of interest

There are no conflicts of interest to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 29 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, N., Li, Y., Yang, S. et al. Microdestructive analysis with Py-GC/MS for the identification of birch tar: a case study from the Huayang site in late Neolithic China. Eur. Phys. J. Plus 138, 580 (2023). https://doi.org/10.1140/epjp/s13360-023-04213-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04213-9

Navigation