Skip to main content
Log in

A Lorentz-violating low-energy model for the bilayer graphene

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this work, we propose a model with Lorentz symmetry violation which describes the electronic low energy limit of the AA-bilayer graphene (BLG) system. The AA-type bilayer is known to preserve the linear dispersion relation of the graphene layer in the low energy limit. The theoretical model shows that in the BLG system, a time-like vector can be associated with the layer separation and contributes to the energy eigenstates. Based on these properties, we can describe in a \((2+1)\)-dimensional space-time the fermionic quasi-particles that emerge in the low-energy limit with the introduction of a Lorentz-violating parameter, in analogy with the \((3 + 1)\)-dimensional Standard Model Extension. Moreover, we study the consequences of the coupling of these fermionic quasi-particles with the electromagnetic field, and we show via effective action that the low-energy photon acquires a massive spectrum. Finally, using the hydrodynamic approach in the collisionless limit, one finds that the LSV generates a new kind of anomalous thermal current to the vortexes of the system via coupling of the LSV vector.Kindly check and confirm the postbox is correctly identified for affiliation 1.The affiliations are correct.Please confirm the corresponding author is correctly identified.The correspondent author is correct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability Statement

No Data associated in the manuscript.

References

  1. V.A. Kosteleckỳ, S. Samuel, Spontaneous breaking of Lorentz symmetry in string theory. Phys. Rev. D 39, 683685 (1989)

    Article  Google Scholar 

  2. I. Mocioiu, M. Pospelov, R. Roiban, Breaking CPT by mixed non-commutativity. Phys. Rev. D 65, 107702 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  3. Y.M.P. Gomes, P.C. Malta, Laboratory-based limits on the Carroll-Field-Jackiw Lorentz-violating electrodynamics. Phys. Rev. D 94, 025031 (2016)

    Article  ADS  Google Scholar 

  4. Y.M.P. Gomes, M.J. Neves, Reconciling LSND and super-Kamiokande data through the dynamical Lorentz symmetry breaking in a four-Majorana fermion model. Phys. Rev. D 106, 015013 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  5. V.A. Kostelecký et al., Lorentz violation in Dirac and Weyl semimetal. Phys. Rev. Res. 4(2), 023106 (2022)

    Article  Google Scholar 

  6. A.G. Grushin, Consequences of a condensed matter realization of Lorentz-violating QED in Weyl semi-metals. Phys. Rev. D 86(4), 045001 (2012)

    Article  ADS  Google Scholar 

  7. C. Chang, X. Li, X. Wang, C. Zhang, Nonlinear optical properties in \(GaAs/Ga_{0.7}Al_{0.3}As\) spherical quantum dots with Like-Deng-Fan-Eckart potential. Phys. Lett. A 467, 128732 (2023)

    Article  MATH  Google Scholar 

  8. X. Li, C. Chang, Nonlinear optical properties of \(GaAs/Al_{eta}Ga_{1-\eta }As\) quantum dots system with Hulthén-Yukawa potential. Opt. Mater. 131, 112605 (2022)

    Article  Google Scholar 

  9. C. Zhang, Z. Wang, Y. Liu, C. Peng, K. Guo, Polaron effects on the optical refractive index changes in asymmetrical quantum wells. Phys. Lett. A 375(3), 484–487 (2011)

    Article  ADS  MATH  Google Scholar 

  10. M. Hirata et al., Observation of an anisotropic Dirac cone reshaping and ferrimagnetic spin polarization in an organic conductor. Nature Commun. 7, 12666 (2016)

    Article  ADS  Google Scholar 

  11. Y.M.P. Gomes, R.O. Ramos, Tilted Dirac cone effects and chiral symmetry breaking in a planar four-fermion model. Phys. Rev. B 104, 245111 (2021)

    Article  ADS  Google Scholar 

  12. E.C. Marino, Quantum Electrodynamics of Particles on a Plane and the Chern-Simons Theory. Nucl. Phys. B 408, 551–564 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. R.F. Ozela, V.S. Alves, E.C. Marino, L.O. Nascimento, J.F.M. Neto, R.O. Ramos, C.M. Smith, Projected Proca field theory: a one-loop study. arXiv:ArXiv/hep-th:1907.11339v2

  14. R.F. Ozela, V.S. Alves, G.C. Magalhães, L.O. Nascimento, Effects of the pseudo-Chern-Simons action for strongly correlated electrons in a plane. Phys. Rev. D 105, 056004 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  15. V.P. Gusynin, S.G. Sharapov, J.P. Carbotte, AC conductivity of graphene: from tight-binding model to 2+1-dimensional quantum electrodynamics. Int. J. Mod. Phys. B 21, 4611–4658 (2007)

    Article  ADS  MATH  Google Scholar 

  16. P.S. Jose, J. Gonzalez, F. Guinea, Non-Abelian gauge potentials in graphene bilayers. Phys. Rev. Lett. 108(21), 216802 (2012)

    Article  ADS  Google Scholar 

  17. B.S. Kandemir, D. Akay, Tuning the pseudo-Zeeman splitting in graphene cones by magnetic field. J. Magn. Magn. Mater. 384, 101–105 (2015)

    Article  ADS  Google Scholar 

  18. D. Dalmazi, A. de Souza Dutra, M. Hott, Quadratic effective action for QED in \(D=2,3\) dimensions. Phys. Rev. D 61, 125018 (2000)

    Article  ADS  Google Scholar 

  19. B. Rosenstein, B. Warr, S.H. Park, Dynamical symmetry breaking in four Fermi interaction models. Phys. Rep. 205, 59 (1991)

    Article  ADS  Google Scholar 

  20. E. McCann, M. Koshino, The electronic properties of bilayer graphene. Rep. Prog. Phys. 76, 056503 (2013)

    Article  ADS  Google Scholar 

  21. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon film. Science 306(5696), 666–669 (2004)

    Article  ADS  Google Scholar 

  22. A.V. Rozhkov et al., Electronic properties of graphene-based bilayer systems. Phys. Rep. 648, 1–104 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  23. E. Mostaani, N.D. Drummond, V.I. Fal’ko, Quantum Monte Carlo calculation of the binding energy of bilayer graphene. Phys. Rev. Lett. 115(11), 115501 (2015)

    Article  ADS  Google Scholar 

  24. M. Pérez-Victoria, Exact calculation of the radiatively induced Lorentz and CPT violation in QED. Phys. Rev. Lett. 83(13), 2518 (1999)

    Article  ADS  Google Scholar 

  25. C. Bao et al., Experimental evidence of chiral symmetry breaking in Kekulé-ordered graphene. Phys. Rev. Lett. 126, 206804 (2021)

    Article  ADS  Google Scholar 

  26. D. Dudal, A. Júlia Mizher, P. Pais, Remarks on the Chern-Simons photon term in the QED description of graphene. Phys. Rev. D 98(6), 065008 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  27. Y. Hidaka, S. Pu, Q. Wang, D.L. Yang, Foundations and applications of quantum kinetic theory. Prog. Particle Nuclear Phys. 127, 103989 (2022)

    Article  Google Scholar 

  28. D. Kondepudi, I. Prigogine, Modern Thermodynamics: From Heat Engines to Dissipative Structures (Wiley, 2014)

    Book  MATH  Google Scholar 

  29. M.M. Gubaeva, T.G. Khunjua, K.G. Klimenko, R.N. Zhokhov, Spontaneous non-Hermiticity in the \((2+1)\)-dimensional Thirring model. Phys. Rev. D 106, 125010 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  30. J.-L. Kneur et al., Updating the phase diagram of the Gross-Neveu model in 2+1 dimensions. Phys. Lett. B 657(1–3), 136–142 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. J.-L. Kneur et al., Emergence of tricritical point and liquid-gas phase in the massless 2+1 dimensional Gross-Neveu model. Phys. Rev. D 76(4), 045020 (2007)

    Article  ADS  Google Scholar 

  32. A. Iorio, P. Pais, Generalized uncertainty principle in graphene, in Journal of Physics: Conference Series. vol. 1275. no. 1 (IOP Publishing, 2019)

  33. A. Parhizkar, V. Galitski, Strained bilayer graphene, emergent energy scales, and Moire gravity. Phys. Rev. Res. 4(2), L022027 (2022)

    Article  Google Scholar 

  34. F. He et al., Moiré patterns in 2D materials: a review. ACS Nano 15(4), 5944–5958 (2021)

    Article  Google Scholar 

  35. L.H. Ryder, Quantum Field Theory, 2nd edn. (Cambridge University Press, 1996)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

Y.M.P.G. is supported by a postdoctoral grant from Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Neves.

Appendix A: The Feynman integrals

Appendix A: The Feynman integrals

In this appendix, we show briefly the Feynman integral in one-loop that were calculated in Section IV. We start with the Feynman parametrization:

$$\begin{aligned} \frac{1}{AB} = \int ^1_0 \frac{dx}{\left[ A x + B(1-x) \right] ^2}, \end{aligned}$$
(76)

that allow us to join the propagator product

$$\begin{aligned}{} & {} \frac{L_{\mu \nu }(p,q)}{ \left[ (p+q)^2 - M_n^2\right] \left( p^2-M_n^2\right) } \nonumber \\{} & \quad =\int _0^1 \frac{dx L_{\mu \nu }(p,q)}{\left( 2 p \cdot q x + x q^2 + p^2 - M_n^2 \right) ^2} \nonumber \\{} & \quad =\int _0^1 \frac{dx L_{\mu \nu }(p,q)}{\left[ (p+ x q)^2 + x(1-x)q^2 - M_n^2 \right] ^2} \nonumber \\{} & \quad =\int _0^1 dx \frac{L_{\mu \nu }(p-xq,q)}{\left( p^2 - \sigma ^2 \right) ^2}, \end{aligned}$$
(77)

where \(L_{\mu \nu }(p,q)\) is a generic tensor that depends on the p and q momenta, and \(\sigma ^2:= M_n^2 - x(1-x) q^2\). We have applied the shift \(p \rightarrow p + x q\) in the last step of (77). Using the known result from the quantum field theory handbook [35], the D-dimension integrals in the momentum space are:

$$\begin{aligned} \int \frac{d^Dp}{(2\pi )^{D}}\frac{1}{(p^2 - \sigma ^2)^\alpha }= & {} \frac{\Gamma (\alpha - \frac{d}{2})}{(2\pi )^D \Gamma (\alpha )} \frac{(-1)^{\frac{D+1}{2}} \pi ^{\frac{D}{2}} }{(- \sigma ^2)^{\alpha - \frac{D}{2}}}, \end{aligned}$$
(78)
$$\begin{aligned} \int \frac{d^Dp}{(2\pi )^{D}} \frac{p_\mu }{(p^2 - \sigma ^2)^\alpha }= & {} 0, \end{aligned}$$
(79)
$$\begin{aligned} \int \frac{d^Dp}{(2\pi )^{D}} \frac{p_\mu p_\nu }{(p^2 - \sigma ^2)^\alpha }= & {} \frac{\Gamma (\alpha - 1-\frac{D}{2})}{(2\pi )^{D} \Gamma (\alpha )} \frac{(-1)^{\frac{D+1}{2}} \pi ^{\frac{D}{2}} }{(- \sigma ^2)^{\alpha -1- \frac{D}{2}}} \eta _{\mu \nu }, \end{aligned}$$
(80)

where \(\sigma ^2 > 0\) is required in these results, and implies that \(4M_{n}^2 > q^2\). In \((1+2)\)-dimensions, we make \(D=3\) and \(\alpha =2\), thus the previous results are reduced to

$$\begin{aligned} \int \frac{d^3p}{(2\pi )^3} \frac{1}{(p^2 - \sigma ^2)^2}= & {} -\frac{i}{16\pi } \frac{1}{\sqrt{\sigma ^2}}, \end{aligned}$$
(81)
$$\begin{aligned} \int \frac{d^3p}{(2\pi )^3} \frac{p_\mu p_\nu }{(p^2 - \sigma ^2)^2}= & {} - \frac{i}{16\pi } \eta _{\mu \nu } \sqrt{\sigma ^2}. \end{aligned}$$
(82)

Thereby, the Feynman integral is

$$\begin{aligned}{} & {} \int \frac{d^3p}{(2 \pi )^3} \frac{1}{ \left[ (p+q)^2 - M_n^2\right] \left( p^2-M_n^2\right) } \nonumber \\{} & \quad = \int _0^1 dx \int \frac{d^3p}{(2 \pi )^3} \frac{1}{\left( p^2 - \sigma ^2 \right) ^2} \nonumber \\{} & \quad = \frac{ i }{8\pi } \int _0^1 \frac{dx }{\sqrt{ M_n^2 - x(1-x) q^2} } \nonumber \\{} & \quad = -\frac{1 }{8 \pi |M_n|} \coth ^{-1}\left( \frac{\sqrt{q^2}}{2M_{n}} \right). \end{aligned}$$
(83)

Going further, one has:

$$\begin{aligned}{} & {} \int \frac{d^3p}{(2\pi )^3} \frac{(p+q)_{\mu } p_\nu }{ \left[ (p+q)^2 - M_n^2\right] \left( p^2-M_n^2\right) } \nonumber \\{} & \quad =\int _0^1 dx \int \frac{d^3p}{(2\pi )^3} \frac{ p_\mu p_\nu + x (1-x) q_\mu q_\nu }{\left( p^2 - \sigma ^2 \right) ^2} \nonumber \\{} & \quad = -\frac{i |M_n|}{16 \pi } \left[ \eta _{\mu \nu } g(y)+\frac{ q_\mu q_\nu }{M_n^2} f(y) \right], \end{aligned}$$
(84)

in which \(y_{n}:= q^2/M_{n}^2\), and the functions f and g are defined by

$$\begin{aligned} f(y_n)= & {} \int _0^1 dx \frac{x(1-x)}{\sqrt{ 1-x(1-x) y_n} } = \nonumber \\= & {} \frac{1}{4 y_n^{3/2}}\left[ -2 \sqrt{y_n}+(4-3y_n) \coth ^{-1}\left( \frac{2}{\sqrt{y_n}}\right) \right. \nonumber \\{} & {} \left. +4 y_n \text{ csch}^{-1}\left( \sqrt{\frac{4}{y_n}-1}\right) \right], \end{aligned}$$
(85)

and

$$\begin{aligned} g(y_n)= & {} \int _0^1 dx \sqrt{ 1 - x(1-x) y_n } \nonumber \\{} & {} =\frac{2\sqrt{y_n}+(3y_n-4) \coth ^{-1}\left( \frac{2}{\sqrt{y_n}}\right) }{4 y_n^{3/2}}. \end{aligned}$$
(86)

Finally, the dimensionally regularized integral (48) that contributes to the self-energy at one loop is

$$\begin{aligned} \Xi _{I,n}(p,D)= & {} - 3 e^2 (\Lambda )^{3-D} \nonumber \\{} & {} \times \int \frac{d^D k}{(2 \pi )^D} \frac{1}{\sqrt{k^2}}\frac{1}{ \left( k+p+I t\right) ^2-M_n ^2}, \nonumber \\ \end{aligned}$$
(87)

in which the result in (1+2) dimensions is recovered when \(D=3\), and \(\Lambda\) is an arbitrary energy scale to keep the dimensionless coupling constant in D-dimensions. Using the Feynman parametrization

$$\begin{aligned} \frac{1}{A B^{1/2}} = \int _0^1 dx \frac{(1-x)^{-1/2}}{[ x A + (1-x) B ]^{3/2}}, \end{aligned}$$
(88)

the integral (49) can be rewritten as:

$$\begin{aligned} \Xi _{I,n}(p,D)= & {} - 3 e^2 (\Lambda )^{3-D} \int _0^1 dx (1-x)^{-1/2} \times \nonumber \\{} & {} \times \int \frac{d^D k}{(2 \pi )^D} \frac{1}{\left[ k^2 - \Delta (x)^2 \right] ^{3/2}}, \end{aligned}$$
(89)

where \([\Delta (x)]^2 = x M_n^2 - x(1-x)(p+ It)^2>0\), and imposes the condition \(2M_{n}^2>(p+It)^2\). By use of identity A3, we obtain:

$$\begin{aligned} \Xi _{I,n}(p,D)= & {} \frac{3 \alpha }{16\pi } (-1)^{(D+3)/2} \Gamma \left( \frac{3-D}{2}\right) \nonumber \\{} & {} \times \int _0^1 dx (1-x)^{-1/2} \left[ \frac{4\pi \Lambda ^2}{\Delta (x)^2} \right] ^{(3-D)/2}. \end{aligned}$$
(90)

We expand around \(D=3-\delta\), when \(\delta \rightarrow 0\), the result is

$$\begin{aligned} \Xi _{I,n}(p,\delta )= & {} -\frac{3\alpha }{4\pi }\frac{1}{\delta }+\frac{3\alpha \gamma _{E}}{8\pi } -\frac{3\alpha }{4\pi }-\frac{3\alpha }{8\pi }\ln \left( \frac{\pi \Lambda ^2}{M_{n}^2} \right) \nonumber \\{} & {} -\frac{3\alpha }{16\pi }\int _{0}^{1} \!\frac{dx}{\sqrt{1-x}}\ln \left[ \frac{M_{n}^2}{M_n^2 - (1-x)(p+ It)^2} \right] . \end{aligned}$$
(91)

The finite part is

$$\begin{aligned} \Xi _{I,n}^{(f)}(p)= & {} \frac{3\alpha }{8\pi }\left\{ \frac{2M_{n}}{\sqrt{(p+It)^2}}\tanh ^{-1}\left[ \frac{\sqrt{(p+It)^2}}{M_{n}} \right] \right. \nonumber \\{} & {} \left. -\ln \left[ \frac{M_{n}^2}{M_{n}^2-(p+It)^2} \right] \right\}, \end{aligned}$$
(92)

in which we impose the condition of \(M_{n}^{2}>(p+It)^2\). If \(M_{n}^{2}<(p+It)^2\), we obtain

$$\begin{aligned} \Xi _{I,n}^{(f)}(p)= & {} \frac{3\alpha }{8\pi }\left\{ \frac{2M_{n}}{\sqrt{(p+It)^2}}\tanh ^{-1}\left[ \frac{\sqrt{(p+It)^2}}{M_{n}} \right] \right. \nonumber \\{} & {} \left. -\ln \left[ \frac{M_{n}^2}{(p+It)^2-M_{n}^2}\right] -i\pi \right\}. \end{aligned}$$
(93)

The limit of \(p^{\mu }\rightarrow 0\) in (92) yields

$$\begin{aligned} \Xi _{n}^{(f)}(0) \!=\! \frac{3\alpha }{8\pi }\left[ \frac{2M_{n}}{\sqrt{t^2}}\tanh ^{-1}\left( \frac{\sqrt{t^2}}{M_{n}} \right) -\ln \left( \frac{M_{n}^2}{M_{n}^2-t^2} \right) \right], \end{aligned}$$
(94)

if \(M_{n}^2>t^2\), and

$$\begin{aligned} \Xi _{n}^{(f)}(0)= & {} \frac{3\alpha }{8\pi }\left[ \frac{2M_{n}}{\sqrt{t^2}}\tanh ^{-1}\left( \frac{M_{n}}{\sqrt{t^2}} \right) \right. \nonumber \\{} & {} \left. -\ln \left( \frac{M_{n}^2}{t^2-M_{n}^2} \right) -i\pi \left( 1-\frac{M_{n}}{\sqrt{t^2}}\right) \right], \end{aligned}$$
(95)

if \(t^2>M_{n}^2\).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomes, Y.M.P., Neves, M.J. A Lorentz-violating low-energy model for the bilayer graphene. Eur. Phys. J. Plus 138, 543 (2023). https://doi.org/10.1140/epjp/s13360-023-04151-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-04151-6

Navigation