Skip to main content
Log in

DFT assessment on stabilities, electronic and thermal transport properties of CoZrSb1−xBix half-Heusler alloys and their superlattices

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Herein, an ab initio study was conducted to investigate the properties of CoZrSb1−xBix half-Heusler alloys and their (CoZrSb)n/(CoZrBi)n superlattices. The structural stability revealed that the α-phase minimized the total energy and was introduced as the ground-state structure for all studied materials. The chemical and dynamic stability of these materials was investigated. In addition, the elastic constants showed that the mechanical stability criteria were satisfied, confirming that materials were mechanically stable. From the electronic structures, the bandgap at the Fermi level confirmed the semiconductor behavior of all materials. The thermal transport properties were analyzed using Slack’s model and the BoltzTraP package. The obtained lattice and electronic thermal conductivity results suggest that these materials can be used as promising materials for thermoelectric devices owing to their low thermal conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability statement

No data associated in the manuscript.

References

  1. L. Chen, S. Gao, X. Zeng, A.M. Dehkordi, T.M. Tritt, S.J. Poon, Appl. Phys. Lett. 107, 041902 (2015). https://doi.org/10.1063/1.4927661

    Article  ADS  Google Scholar 

  2. T. Zhu, Y. Liu, Fu. Chenguang, J.P. Heremans, J.G. Snyder, X. Zhao, Adv. Mater. 29, 1605884 (2017). https://doi.org/10.1002/adma.201605884

    Article  Google Scholar 

  3. W.G. Zeier, J. Schmitt, G. Hautier, U. Aydemir, Z.M. Gibbs, C. Felser, G.J. Snyder, Nat. Rev. Mater. 1(6), 1–10 (2016). https://doi.org/10.1038/natrevmats.2016.32

    Article  Google Scholar 

  4. S. Sakurada, N. Shutoh, Appl. Phys. Lett. 86, 082105 (2005). https://doi.org/10.1063/1.1868063

    Article  ADS  Google Scholar 

  5. S. Berri, J. Supercond. Novel Magn. 33, 3809–3818 (2020). https://doi.org/10.1007/s10948-020-05638-4

    Article  Google Scholar 

  6. G. Uğur, A.K. Kushwaha, M. Güler, Z. Charifi, Ş Uğur, E. Güler, H. Baaziz, Mater. Sci. Semicond. Process. 123, 105531 (2021). https://doi.org/10.1016/j.mssp.2020.105531

    Article  Google Scholar 

  7. M.H. Elahmar, H. Rached, D. Rached, Mater. Chem. Phys. 267, 124712 (2021). https://doi.org/10.1016/j.matchemphys.2021.124712

    Article  Google Scholar 

  8. T. Zerrouki, H. Rached, D. Rached, M. Caid, O. Cheref, M. Rabah, Int. J. Quant. Chem. 121, e26582 (2021). https://doi.org/10.1002/qua.26582

    Article  Google Scholar 

  9. H. Saib, S. Dergal, H. Rached, M. Dergal, SPIN 10, 2050025 (2020). https://doi.org/10.1142/S2010324720500253

    Article  ADS  Google Scholar 

  10. C. Fu, S. Bai, Y. Liu, Y. Tang, L. Chen, X. Zhao, T. Zhu, Nat. Commun. 6, 8144 (2015). https://doi.org/10.1038/ncomms9144

    Article  ADS  Google Scholar 

  11. H. Zhu, J. Mao, Y. Li, J. Sun, Y. Wang, Q. Zhu, G. Li, Q. Song, J. Zhou, Y. Fu, R. He, T. Tong, Z. Liu, W. Ren, L. You, Z. Wang, J. Luo, A. Sotnikov, J. Bao, K. Nielsch, G. Chen, D.J. Singh, Z. Ren, Nat. Commun. 10, 270 (2019). https://doi.org/10.1038/s41467-018-08223-5

    Article  ADS  Google Scholar 

  12. H. Zhu, R. He, J. Mao, Q. Zhu, C. Li, J. Sun, W. Ren, Y. Wang, Z. Liu, Z. Tang, A. Sotnikov, Z. Wang, D. Broido, D.J. Singh, G. Chen, K. Nielsch, Z. Ren, Nat. Commun. 9, 2497 (2018). https://doi.org/10.1038/s41467-018-04958-3

    Article  ADS  Google Scholar 

  13. G. Rogl, P. Sauerschnig, Z. Rykavets, V.V. Romaka, P. Heinrich, B. Hinterleitner, A. Grytsiv, E. Bauer, P. Rogl, Acta Mater. 131, 336–348 (2017). https://doi.org/10.1016/j.actamat.2017.03.071

    Article  ADS  Google Scholar 

  14. S. Berri, J. Supercond. Novel Magn. 29, 1309–1315 (2016). https://doi.org/10.1007/s10948-020-05638-4

    Article  Google Scholar 

  15. D.P. Rai, R.K. Thapa, J. Alloy. Compd. 542, 257–263 (2012). https://doi.org/10.1016/j.jallcom.2012.07.059

    Article  Google Scholar 

  16. S. Berri, Chin. J. Phys. 55, 195–202 (2017). https://doi.org/10.1016/j.cjph.2016.10.017

    Article  Google Scholar 

  17. K. Kaur, R. Kumar, D.P. Rai, J. Alloy. Compd. 763, 1018–1023 (2018). https://doi.org/10.1016/j.jallcom.2018.06.034

    Article  Google Scholar 

  18. F.G. Aliev, N.B. Brandt, V.V. Moshchalkov, V.V. Kozyrkov, R.V. Skolozdra, A.I. Belogorokhov, Z. Phys. B Condens. Matter. 75, 167–171 (1989). https://doi.org/10.1007/BF01307996

    Article  ADS  Google Scholar 

  19. C. Uher, J. Yang, S. Hu, D.T. Morelli, G.P. Meisner, Phys. Rev. B 59, 8615–8621 (1999). https://doi.org/10.1103/PhysRevB.59.8615

    Article  ADS  Google Scholar 

  20. Y. Xia, S. Bhattacharya, V. Ponnambalam, A.L. Pope, S.J. Poon, T.M. Tritt, J. Appl. Phys. 88, 1952–1955 (2000). https://doi.org/10.1063/1.1305829

    Article  ADS  Google Scholar 

  21. S. Bhattacharya, A.L. Pope, R.T. Littleton IV., T.M. Tritt, V. Ponnambalam, Y. Xia, S.J. Poon, Appl. Phys. Lett. 77, 2476–2478 (2000). https://doi.org/10.1063/1.1318237

    Article  ADS  Google Scholar 

  22. H. Hohl, A.P. Ramirez, C. Goldmann, G. Ernst, B. Wolfing, E. Bucher, Efficient dopants for ZrNiSn-based thermoelectric materials. J. Phys. Condens. Matter. 11(7), 1697 (1999). https://doi.org/10.1088/0953-8984/11/7/004

    Article  ADS  Google Scholar 

  23. H. Hohl, A.P. Ramirez, C. Goldmann, G. Ernst, B. Wolfing, E. Bucher, J. Phys. Condens. Matter. 11, 1697 (1999). https://doi.org/10.1088/0953-8984/11/7/004

    Article  ADS  Google Scholar 

  24. K. Kaur, D.P. Rai, R.K. Thapa, S. Srivastava, J. Appl. Phys. 122, 045110 (2017). https://doi.org/10.1063/1.4996648

    Article  ADS  Google Scholar 

  25. Y. Nakajima, R. Hu, K. Kirshenbaum, A. Hughes, P. Syers, X. Wang, K. Wang, R. Wang, S.R. Saha, D. Pratt, J.W. Lynn, J. Paglione, Sci. Adv. 1, e1500242 (2015). https://doi.org/10.1126/sciadv.1500242

    Article  ADS  Google Scholar 

  26. M. Labair, H. Rached, D. Rached, S. Benalia, B. Abidri, R. Khenata, R. Ahmed, S.B. Omran, A. Bouhemadou, S.V. Syrotyuk, Int. J. Mod. Phys. C 27, 1650107 (2016). https://doi.org/10.1142/S0129183116501072

    Article  ADS  Google Scholar 

  27. S.Y. Lin, M. Chen, X.B. Yang, Y.J. Zhao, S.C. Wu, C. Felser, B. Yan, Phys. Rev. B 91(9), 094107 (2015). https://doi.org/10.1103/PhysRevB.91.094107

    Article  ADS  Google Scholar 

  28. H. Rached, D. Rached, R. Khenata, B. Abidri, M. Rabah, N. Benkhettou, S.B. Omran, J. Magn. Magn. Mater. 379, 84–89 (2015). https://doi.org/10.1016/j.jmmm.2014.12.013

    Article  ADS  Google Scholar 

  29. S. Picozzi, A. Continenza, A.J. Freeman, J. Phys. D Appl. Phys. 39, 851 (2006). https://doi.org/10.1088/0022-3727/39/5/S11

    Article  ADS  Google Scholar 

  30. T. Zhu, C. Fu, H. Xie, Y. Liu, X. Zhao, Adv. Energy Mater. 5, 1500588 (2015). https://doi.org/10.1002/aenm.201500588

    Article  Google Scholar 

  31. L. Offemes, P. Ravindran, A. Kjekshus, J. Alloy. Compd. 439, 37–54 (2007). https://doi.org/10.1016/j.jallcom.2006.08.316

    Article  Google Scholar 

  32. J.M. Mena, T. Gruh, Phys. Rev. B 101, 064201 (2020). https://doi.org/10.1103/PhysRevB.101.064201

    Article  ADS  Google Scholar 

  33. P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964). https://doi.org/10.1103/PhysRev.136.B864

    Article  ADS  Google Scholar 

  34. P. Blaha, K. Schwarz, F. Tran, R. Laskowski, G.K.H. Madsen, L.D. Marks, J. Chem. Phys. 152, 074101 (2020). https://doi.org/10.1063/1.5143061

    Article  ADS  Google Scholar 

  35. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  ADS  Google Scholar 

  36. M. Jamal, M. Bilal, I. Ahmad, S. Jalali-Asadabadi, J. Alloy. Compd. 735, 569–579 (2018). https://doi.org/10.1016/j.jallcom.2017.10.139

    Article  Google Scholar 

  37. G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67–71 (2006). https://doi.org/10.1016/j.cpc.2006.03.007

    Article  ADS  Google Scholar 

  38. R. He, T. Zhu, Y. Wang, U. Wolff, J.-C. Jaud, A. Sotnikov, P. Potapov, D. Wolf, P. Ying, M. Wood, Z. Liu, L. Feng, N.P. Rodriguez, G.J. Snyder, J.C. Grossman, K. Nielsch, G. Schierning, Mater. Renew. Sustain. Energy 9, 16 (2020). https://doi.org/10.1039/D0EE03014G

    Article  Google Scholar 

  39. Z. Han, X. Yang, W. Li, T. Feng, X. Ruan, Comput. Phys. Commun. 270, 108179 (2022). https://doi.org/10.1016/j.cpc.2021.108179

    Article  Google Scholar 

  40. G.A. Slack, J. Phys. Chem. Solids 34, 321–335 (1973). https://doi.org/10.1016/0022-3697(73)90092-9

    Article  ADS  Google Scholar 

  41. G. A. Slack, Solid state physics: advances in research and applications, Edited by H. Ehrenreich, F. Seitz, and D. Turnbull, (Vol 34) Academic Press, New York, 1979.

  42. T. Graf, C. Felser, S.S.P. Parkin, Progr. Solid State Chem. 39, 1–50 (2011). https://doi.org/10.1016/j.progsolidstchem.2011.02.001

    Article  Google Scholar 

  43. J. Nuss, M. Jansen, Z. Anorg. Allg. Chem. 628, 1152–1157 (2002)

    Article  Google Scholar 

  44. P. Villars, L.D. Calvert, Pearson’s Handbook Crystallographic Data for Intermetallic Phases (American Society for Metals, Cleveland, OH, USA, 1985)

    Google Scholar 

  45. R.B. Helmholdt, R.A. de Groot, F.M. Mueller, P.G. van Engen, K.H.J. Buschow, J. Magn. Magn. Mater. 43, 249 (1984). https://doi.org/10.1016/0304-8853(84)90075-1

    Article  ADS  Google Scholar 

  46. F.G. Aliev, Phys. B Condens. Matter. 171, 199 (1991). https://doi.org/10.1016/0921-4526(91)90516-H

    Article  ADS  Google Scholar 

  47. G. Surucu, M. Isik, A. Candan, X. Wang, H.H. Gullu, Phys. B Condens. Matter. 587, 412146 (2020). https://doi.org/10.1016/j.physb.2020.412146

    Article  Google Scholar 

  48. F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 5390 (1944). https://doi.org/10.1073/pnas.30.9.244

    Article  Google Scholar 

  49. M. Zeeshan, H.K. Singh, J. van den Brink, H.C. Kandpal, Phys. Rev. Mat 1, 075407 (2017). https://doi.org/10.1103/PhysRevMaterials.1.075407

    Article  Google Scholar 

  50. S. Singh, M. Zeeshan, J. van den Brink, and Hem C. Kandpal, Condensed Matter>Materials Science: preprint arXiv: 1904.02488 (2019). https://arxiv.org/pdf/1904.02488.pdf.

  51. L. Vegard, Z. Phys. 5, 17–26 (1921). https://doi.org/10.1007/BF01349680

    Article  ADS  Google Scholar 

  52. D.M. Hoat, M. Naseri, R. Ponce-Pérez, J.F. Rivas-Silva, A.I. Kartamyshev, G.H. Cocoletzi, Chem. Phys. 537, 110848 (2020). https://doi.org/10.1016/j.chemphys.2020.110848

    Article  Google Scholar 

  53. B. Jobst, D. Hommel, U. Lunz, T. Gerhard, G. Landwehr, Appl. Phys. Lett. 69, 97–99 (1996). https://doi.org/10.1063/1.118132

    Article  ADS  Google Scholar 

  54. M. Ameri, D. Rached, M. Rabah, F.H. El Hassan, R. Khenata, M. Doui-aici, Phys. Status Solidi (b) 245, 106–113 (2008). https://doi.org/10.1002/pssb.200743128

    Article  ADS  Google Scholar 

  55. S. Baroni, S. de Gironcoli, A.D. Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001). https://doi.org/10.1103/RevModPhys.73.515

    Article  ADS  Google Scholar 

  56. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, M.C. Payne, J. Phys. Condens. Matter. 14, 2717 (2002). https://doi.org/10.1088/0953-8984/14/11/301

    Article  ADS  Google Scholar 

  57. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976). https://doi.org/10.1103/PhysRevB.13.5188

    Article  ADS  MathSciNet  Google Scholar 

  58. B. Montanari, N.M. Harrison, Chem. Phys. Lett. 364, 528–534 (2002). https://doi.org/10.1016/S0009-2614(02)01401-X

    Article  ADS  Google Scholar 

  59. S. Morsli, M. Caid, D. Rached, H. Rached, N. Benkhettou, I. Bourachid, Comput. Condens. Matter. 27, e00550 (2021). https://doi.org/10.1016/j.cocom.2021.e00550

    Article  Google Scholar 

  60. A. Azzouz-Rached, H. Rached, I. Ouadha, D. Rached, A. Reggad, Mater. Chem. Phys. 260, 124189 (2021). https://doi.org/10.1016/j.matchemphys.2020.124189

    Article  Google Scholar 

  61. H. Rached, D. Rached, R. Khenata, A.H. Reshak, M. Rabah, Phys. Status Solidi (b) 246, 1580–1586 (2009). https://doi.org/10.1002/pssb.200844400

    Article  ADS  Google Scholar 

  62. W. Voigt, Lehrbuch der Kristallphysik, Taubner, Leipzig, 1928. https://ci.nii.ac.jp/naid/10018763410/en/.

  63. A. Reuss, ZAMM J. Appl. Math. Mech. 9, 49–58 (1929). https://doi.org/10.1002/zamm.19290090104

    Article  Google Scholar 

  64. R. Hill, Proc. Phys. Soc. A 65, 349 (1952). https://doi.org/10.1088/0370-1298/65/5/307

    Article  ADS  Google Scholar 

  65. G. Fiedler, P. Kratzer, Phys. Rev. B 94, 075203 (2016). https://doi.org/10.1103/PhysRevB.94.075203

    Article  ADS  Google Scholar 

  66. I.N. Frantsevich, F.F. Voronov, S.A. Bakuta, Handbook on Elastic constants and moduli of elasticity for metals and nonmetals (Naukova Dumka, Kiev, 1982), pp.60–180

    Google Scholar 

  67. J.J.G. Moreno, J. Cao, M. Fronzi, M.H.N. Assadi, Matter. Renew. Sustain Energy (2020). https://doi.org/10.1007/s40243-020-00175-5

    Article  Google Scholar 

  68. H.A. Eivari, Z. Sohbatzadeh, M.H.N. Assadi, X. Ruan, Mater. Today Energy 21, 100744 (2021). https://doi.org/10.1016/j.mtener.2021.100744

    Article  Google Scholar 

  69. T. Jia, G. Chen, Y. Zhang, Phys. Rev. B 95, 155206 (2017). https://doi.org/10.1103/PhysRevB.95.155206

    Article  ADS  Google Scholar 

  70. Y. Xiao, C. Chang, Y. Pei, D. Wu, K. Peng, X. Zhou, S. Gong, J. He, Y. Zhang, Z. Zeng, L.D. Zhao, Phys. Rev. B 94, 125203 (2016). https://doi.org/10.1103/PhysRevB.94.125203

    Article  ADS  Google Scholar 

  71. A. Belasri, D. Rached, H. Rached, I. Bourachid, Y. Guermit, M. Caid, Eur. Phys. J. B 94, 110 (2021). https://doi.org/10.1140/epjb/s10051-021-00127-6

    Article  ADS  Google Scholar 

  72. Y. Rached, M. Caid, M. Merabet, S. Benalia, H. Rached, L. Djoudi, M. Mokhtari, D. Rached, Int. J. Quantum Chem. 122, e26875 (2022). https://doi.org/10.1002/qua.26875

    Article  Google Scholar 

Download references

Funding

The study was supported by grant B00L02UN220120190002 from the DGRSDT (The general directorate for scientific research and technological development).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Rached.

Ethics declarations

Conflict of interest

The authors declare that they have no affiliations with or involvement in any organization or entity with any financial interest in the subject matter or materials discussed in this manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rached, Y., Rached, D., Rached, H. et al. DFT assessment on stabilities, electronic and thermal transport properties of CoZrSb1−xBix half-Heusler alloys and their superlattices. Eur. Phys. J. Plus 138, 307 (2023). https://doi.org/10.1140/epjp/s13360-023-03910-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03910-9

Navigation