Skip to main content
Log in

The cosmological axion dark matter decay

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

It has been shown that the axions produced in early universe can account for the cosmological dark matter. Theoretically, axions can decay and their decay rate can be greatly enhanced by stimulated emission of photons. In this article, we present a theoretical framework to describe the decay of the cosmological axion dark matter. We show that, for a certain parameter space of axion mass \(m_a\) and the axion–photon coupling constant \(g_{a \gamma \gamma }\), the axion decay would be significantly triggered so that no axion dark matter remains. For the popular benchmark models of the cosmological axion dark matter \(m_a \sim 10^{-5}\) eV, current observational constraints of the axion–photon coupling constant can ensure that axions are stable enough to be the cosmological dark matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability Statement

The data underlying this article will be shared on reasonable request to the corresponding author. This manuscript has associated data in a data repository. [Authors’ comment: There is no extra data associated with this article.]

References

  1. E. Aprile et al., Phys. Rev. Lett. 121, 111302 (2018)

    Article  ADS  Google Scholar 

  2. M. Ackermann et al., Fermi-LAT Collaboration. Phys. Rev. Lett. 115, 231301 (2015)

    Article  ADS  Google Scholar 

  3. M.H. Chan, C.H. Leung, Sci. Rep. 7, 14895 (2017)

    Article  ADS  Google Scholar 

  4. K.N. Abazajian, S. Horiuchi, M. Kaplinghat, R.E. Keeley, O. Macias, Phys. Rev. D 102, 043102 (2020)

    Article  ADS  Google Scholar 

  5. G. Ambrosi et al., Nature 552, 63 (2017)

    Article  ADS  Google Scholar 

  6. M. Aguilar et al., Phys. Rev. Lett. 122, 041102 (2019)

    Article  ADS  Google Scholar 

  7. A.E. Egorov, E. Pierpaoli, Phys. Rev. D 88, 023504 (2013)

    Article  ADS  Google Scholar 

  8. T. Bringmann, M. Vollmann, C. Weniger, Phys. Rev. D 90, 123001 (2014)

    Article  ADS  Google Scholar 

  9. M.H. Chan, L. Cui, J. Liu, C.S. Leung, Astrophys. J. 872, 177 (2019)

    Article  ADS  Google Scholar 

  10. M.H. Chan, C.M. Lee, Phys. Rev. D 102, 063017 (2020)

    Article  ADS  Google Scholar 

  11. M.H. Chan, Galaxies 9, 11 (2021)

    Article  ADS  Google Scholar 

  12. D. Abecrcrombie et al., Phys. Dark Uni. 27, 100371 (2020)

    Article  Google Scholar 

  13. R.D. Peccei, H.R. Quinn, Phys. Rev. Lett. 38, 1440 (1977)

    Article  ADS  Google Scholar 

  14. S. Weinberg, Phys. Rev. Lett. 40, 223 (1978)

    Article  ADS  Google Scholar 

  15. J. Preskill, M.B. Wise, F. Wilczek, Phys. Lett. B 120, 127 (1983)

    Article  ADS  Google Scholar 

  16. L.F. Abbott, P. Sikivie, Phys. Lett. B 120, 133 (1983)

    Article  ADS  Google Scholar 

  17. D. Grin, G. Covone, J.-P. Kneib, M. Kamionkowski, A. Blain, E. Jullo, Phys. Rev. D 75, 105018 (2007)

    Article  ADS  Google Scholar 

  18. A. Salvio, A. Strumia, W. Xue, J. Cosmol. Astropart. Phys. 01, 011 (2014)

    Article  ADS  Google Scholar 

  19. P.W. Graham, I.G. Irastorza, S.K. Lamoreaux, A. Lindner, K.A. van Bibber, Ann. Rev. Nuc. Part. Sci. 65, 485 (2015)

    Article  ADS  Google Scholar 

  20. D.J.E. Marsh, Phys. Rep. 643, 1 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  21. R.A. Battye, B. Garbrecht, J.I. McDonald, F. Pace, S. Srinivasan, Phys. Rev. D 102, 023504 (2020)

    Article  ADS  Google Scholar 

  22. K. Ehret et al., Phys. Lett. B 689, 149 (2010)

    Article  ADS  Google Scholar 

  23. V. Anastassopoulos et al., Nat. Phys. 13, 584 (2017)

    Article  Google Scholar 

  24. A. Caputo, C.P. Garay, S.J. Witte, Phys. Rev. D 98, 083024 (2018)

    Article  ADS  Google Scholar 

  25. A. Caputo, M. Regis, M. Taoso, S.J. Witte, J. Cosmol. Astropart. Phys. 03, 027 (2019)

    Article  ADS  Google Scholar 

  26. A. Arza, Eur. Phys. J. C 79, 250 (2019)

    Article  ADS  Google Scholar 

  27. D. Blas, S.J. Witte, Phys. Rev. D 102, 103018 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  28. A. Arza, T. Schwetz, E. Todarello, J. Cosmol. Astropart. Phys. 10, 013 (2020)

    Article  ADS  Google Scholar 

  29. E. Massó, R. Toldrà, Phys. Rev. D 52, 1755 (1995)

    Article  ADS  Google Scholar 

  30. A. Ayala, I. Domínguez, M. Giannotti, A. Mirizzi, O. Straniero, Phys. Rev. Lett. 113, 191302 (2014)

    Article  ADS  Google Scholar 

  31. E.L. Wright, Measuring and modeling the universe, from the Carnegie Observatories Centennial Symposia (Cambridge University Press, Cambridge, 2004)

    Google Scholar 

  32. P. van Dokkum et al., Nature 555, 629 (2018)

    Article  ADS  Google Scholar 

  33. P. van Dokkum, S. Danieli, R. Abraham, C. Conroy, A.J. Romanowsky, Astrophys. J. 874, L5 (2019)

    Article  ADS  Google Scholar 

  34. M.H. Chan, Sci. Rep. 11, 20087 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referee for useful comments. The work described in this paper was partially supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. EdUHK 18300922).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Man Ho Chan.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chan, M.H. The cosmological axion dark matter decay. Eur. Phys. J. Plus 138, 286 (2023). https://doi.org/10.1140/epjp/s13360-023-03877-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03877-7

Navigation