Skip to main content
Log in

Impulsive origin of solar spicule-like jets

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Using the observations of the coronal hole in Si IV 1393.755 Å line as recorded by interface region imaging spectrograph (IRIS) on 8th October 2013, Chen et al. (Astrophys. J. 873(1):79, 2019) have reported non-Gaussian line profiles showing unusual line broadening that may correspond to the velocity enhancement in the emitting plasma. This observational scenario may be caused by the localized impulsive energy release associated with the footpoint of spicule-like cool jet. We revisit the observations of Chen et al. (Astrophys. J. 873(1):79, 2019) to analyse a specific event showing non-Gaussian profiles in the Si IV 1393.755 Å line, for a lifetime of 3.0 min and Doppler shifts reaching 68 km s\(^{-1}\), which is associated with a spicule-like jet of length 8.0 Mm. We model this jet by implementing an observed velocity enhancement in a magnetized, gravitationally stratified, two-dimensional (2-D) model solar atmosphere. The model atmosphere consists of open magnetic fields and realistic temperature profile. The velocity perturbation of \(\approx\) 68 km s\(^{-1}\), resembling the observed velocity enhancement, launches a thin spicule-like jet whose properties closely match with the observed jet. We also show that non-adiabatic conditions (e.g., thermal conduction and radiative cooling) affect the jet propagation, mass flux, and kinetic energy density. We demonstrate that such spicule-like jets may transport mass and energy into the overlying solar atmosphere. The synthetic images derived from the use of simulation data (e.g., density, temperature) and atomic parameters of Si IV 1393.755 Å from CHIANTI database show that model jet consists of bright plasma as detected in the emissions at transition region temperature. It also consists of a cool core material that indicates its origin in the solar chromosphere. This cool chromospheric material appears as a dark plasma thread seen in the synthetic images that is eventually not evident in the Si IV emissions. IRIS Si IV emissions capture the heated counterpart of the observed jet, which is also evident in the synthetic images as a bright feature. Complementing the recent observations revealing the impulsive origin of the spicule-like jets, our present model emphasizes comprehensively their evolution in both adiabatic and non-adiabatic conditions of the solar atmosphere. The model implicitly displays the presence of the hot and cool components of jet’s plasma. It also demonstrates that the cooling atmosphere affects the kinematics and energetics of the jets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability statement

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

Notes

  1. https://www.chiantidatabase.org/tech_reports/03_synthetic_spectra/chianti_report_03.pdf.

References

  1. Y. Chen, H. Tian, Z. Huang, H. Peter, T. Samanta, Investigating the transition region explosive events and their relationship to network jets. Astrophys. J. 873(1), 79 (2019)

    Article  ADS  Google Scholar 

  2. B. De Pontieu, R. Erdélyi, S.P. James, Solar chromospheric spicules from the leakage of photospheric oscillations and flows. Nature 430(6999), 536–539 (2004)

    Article  ADS  Google Scholar 

  3. K. Shibata, T. Nakamura, T. Matsumoto, K. Otsuji, T.J. Okamoto, N. Nishizuka, T. Kawate, H. Watanabe, S. Nagata, S. UeNo et al., Chromospheric anemone jets as evidence of ubiquitous reconnection. Science 318(5856), 1591–1594 (2007)

    Article  ADS  Google Scholar 

  4. B. De Pontieu, S.W. McIntosh, M. Carlsson, V.H. Hansteen, T.D. Tarbell, P. Boerner, J. Martinez-Sykora, C.J. Schrijver, A.M. Title, The origins of hot plasma in the solar corona. Science 331(6013), 55–58 (2011)

    Article  ADS  Google Scholar 

  5. S. Wedemeyer-Böhm, E. Scullion, O. Steiner, L.R. van der Voort, J. de La Cruz Rodriguez, V. Fedun, R. Erdélyi, Magnetic tornadoes as energy channels into the solar corona. Nature 486(7404), 505–508 (2012)

    Article  ADS  Google Scholar 

  6. W. Uddin, B. Schmieder, R. Chandra, A.K. Srivastava, P. Kumar, S. Bisht, Observations of multiple surges associated with magnetic activities in ar 10484 on 2003 october 25. Astrophys. J. 752(1), 70 (2012)

    Article  ADS  Google Scholar 

  7. P. Kayshap, A.K. Srivastava, K. Murawski, D. Tripathi, Origin of macrospicule and jet in polar corona by a small-scale kinked flux tube. Astrophys. J. Lett. 770(1), L3 (2013)

    Article  ADS  Google Scholar 

  8. P. Kayshap, A.K. Srivastava, K. Murawski, The kinematics and plasma properties of a solar surge triggered by chromospheric activity in ar11271. Astrophys. J. 763(1), 24 (2012)

    Article  ADS  Google Scholar 

  9. H. Tian, E.E. DeLuca, S.R. Cranmer, B. De Pontieu, H. Peter, J. Martínez-Sykora, L. Golub, S. McKillop, K.K. Reeves, M.P. Miralles et al., Prevalence of small-scale jets from the networks of the solar transition region and chromosphere. Science 346(6207), 1255711 (2014)

    Article  Google Scholar 

  10. D. Kuridze, V. Henriques, M. Mathioudakis, R. Erdélyi, T.V. Zaqarashvili, S. Shelyag, P.H. Keys, F.P. Keenan, The dynamics of rapid redshifted and blueshifted excursions in the solar h\(\alpha\) line. Astrophys. J. 802(1), 26 (2015)

    Article  ADS  Google Scholar 

  11. A. Reid, M. Mathioudakis, J.G. Doyle, E. Scullion, C.J. Nelson, V. Henriques, T. Ray, Magnetic flux cancellation in ellerman bombs. Astrophys. J. 823(2), 110 (2016)

    Article  ADS  Google Scholar 

  12. J. Martínez-Sykora, B. De Pontieu, V.H. Hansteen, L.R. van der Voort, M. Carlsson, T.M.D. Pereira, On the generation of solar spicules and alfvénic waves. Science 356(6344), 1269–1272 (2017)

    Article  ADS  Google Scholar 

  13. A.K. Srivastava, K. Murawski, B. Kuźma, D. Patryk Wójcik, T.V. Zaqarashvili, M. Stangalini, Z.E. Musielak, J.G. Doyle, P. Kayshap, B.N. Dwivedi, Confined pseudo-shocks as an energy source for the active solar corona. Nat. Astron. 2(12), 951–956 (2018)

    Article  ADS  Google Scholar 

  14. N.K. Panesar, A.C. Sterling, R.L. Moore, A.R. Winebarger, S.L. Savage, L.E. Golub, L.A. Rachmeler, K. Kobayashi, D.H. Brooks et al., Hi-c 2.1 observations of jetlet-like events at edges of solar magnetic network lanes. Astrophys. J. Lett. 887(1), L8 (2019)

    Article  ADS  Google Scholar 

  15. T. Samanta, H. Tian, V. Yurchyshyn, H. Peter, W. Cao, A. Sterling, R. Erdélyi, K. Ahn, S. Feng, D. Utz et al., Generation of solar spicules and subsequent atmospheric heating. Science 366(6467), 890–894 (2019)

    Article  ADS  Google Scholar 

  16. N.K. Panesar, S.K. Tiwari, R.L. Moore, A.C. Sterling, Network jets as the driver of counter-streaming flows in a solar filament/filament channel. Astrophys. J. Lett. 897(1), L2 (2020)

    Article  ADS  Google Scholar 

  17. P. Kayshap, R. Singh Payal, S.C. Tripathi, Diagnostics of homologous solar-surge plasma as observed by iris and sdo. Mon. Not. R. Astron. Soc. 505(4), 5311–5326 (2021)

    Article  ADS  Google Scholar 

  18. Y. Wang, Q. Zhang, H. Ji, High-resolution he i 10830 å narrowband imaging for a small-scale chromospheric jet. Astrophys. J. 913(1), 59 (2021)

    Article  ADS  Google Scholar 

  19. A.C. Sterling, Solar spicules: a review of recent models and targets for future observations–(invited review). Sol. Phys. 196(1), 79–111 (2000)

    Article  ADS  Google Scholar 

  20. Y.Z. Zhang, K. Shibata, J.X. Wang, X.J. Mao, T. Matsumoto, Y. Liu, J.T. Su, Revision of solar spicule classification. Astrophys. J. 750(1), 16 (2012)

    Article  ADS  Google Scholar 

  21. T.M. Domingos Pereira, B. De Pontieu, M. Carlsson, V. Hansteen, J. Lemen, P. Boerner, N. Hurlburt, J.P. Wülser, J. Martinez-Sykora et al., An interface region imaging spectrograph first view on solar spicules. Astrophys. J. Lett. 792(1), L15 (2014)

    Article  ADS  Google Scholar 

  22. B. Kuźma, K. Murawski, P. Kayshap, D. Wójcik, A.K. Srivastava, B.N. Dwivedi, Two-fluid numerical simulations of solar spicules. Astrophys. J. 849(2), 78 (2017)

    Article  ADS  Google Scholar 

  23. D. Wójcik, B. Kuźma, K. Murawski, A.K. Srivastava, Two-fluid numerical simulations of the origin of the fast solar wind. Astrophys. J. 884(2), 127 (2019)

    Article  ADS  Google Scholar 

  24. B. De Pontieu, V. Polito, V. Hansteen, P. Testa, K.K. Reeves, P. Antolin, D. Elias Nóbrega-Siverio, A.F. Kowalski, J. Martinez-Sykora, M. Carlsson et al., A new view of the solar interface region from the interface region imaging spectrograph (iris). Sol. Phys. 296(5), 1–91 (2021)

    Article  Google Scholar 

  25. R.J. Morton, Chromospheric jets around the edges of sunspots. Astron. Astrophys. 543, A6 (2012)

    Article  ADS  Google Scholar 

  26. G. Tsiropoula, K. Tziotziou, I. Kontogiannis, M.S. Madjarska, J.G. Doyle, Y. Suematsu, Solar fine-scale structures. i. Spicules and other small-scale, jet-like events at the chromospheric level: observations and physical parameters. Space Sci. Rev. 169(1), 181–244 (2012)

    Article  ADS  Google Scholar 

  27. J. Shetye, J. Gerard Doyle, E. Scullion, C.J. Nelson, D. Kuridze, V. Henriques, F. Woeger, High-cadence observations of spicular-type events on the sun. Astron. Astrophys. 589, A3 (2016)

    Article  Google Scholar 

  28. A.K. Srivastava, J. Shetye, K. Murawski, J.G. Doyle, M. Stangalini, E. Scullion, T. Ray, D. Patryk Wójcik, B.N. Dwivedi, High-frequency torsional alfvén waves as an energy source for coronal heating. Sci. Rep. 7(1), 1–7 (2017)

    Article  Google Scholar 

  29. S.R. Cranmer, L.N. Woolsey, Driving solar spicules and jets with magnetohydrodynamic turbulence: testing a persistent idea. Astrophys. J. 812(1), 71 (2015)

    Article  ADS  Google Scholar 

  30. F.M. Dover, R. Sharma, R. Erdélyi, Magnetohydrodynamic simulations of spicular jet propagation applied to lower solar atmosphere model. Astrophys. J. 913(1), 19 (2021)

    Article  ADS  Google Scholar 

  31. K. Wilhelm, Solar spicules and macrospicules observed by sumer. Astron. Astrophys. 360, 351–362 (2000)

    ADS  Google Scholar 

  32. K. Murawski, A.K. Srivastava, T.V. Zaqarashvili, Numerical simulations of solar macrospicules. Astron. Astrophys. 535, A58 (2011)

    Article  ADS  Google Scholar 

  33. S.M. Bennett, R. Erdélyi, On the statistics of macrospicules. Astrophys. J. 808(2), 135 (2015)

    Article  ADS  Google Scholar 

  34. J.J. González-Avilés, K. Murawski, A.K. Srivastava, T.V. Zaqarashvili, J.A. González-Esparza, Numerical simulations of macrospicule jets under energy imbalance conditions in the solar atmosphere. Mon. Not. R. Astron. Soc. 505(1), 50–64 (2021)

    Article  ADS  Google Scholar 

  35. P. Kayshap, K. Murawski, A.K. Srivastava, B.N. Dwivedi, Rotating network jets in the quiet sun as observed by iris. Astron. Astrophys. 616, A99 (2018)

    Article  ADS  Google Scholar 

  36. M.P. Rast, N. BelloGonzález, L. BellotRubio, W. Cao, G. Cauzzi, E. DeLuca, B. DePontieu, L. Fletcher, S.E. Gibson, P.G. Judge et al., Critical science plan for the Daniel k. Inouye solar telescope (dkist). Sol. Phys. 296(4), 1–88 (2021)

    Article  Google Scholar 

  37. Y. Qi, Z. Huang, L. Xia, B. Li, F. Hui, W. Liu, M. Sun, Z. Hou, On the relation between transition region network jets and coronal plumes. Sol. Phys. 294(7), 1–16 (2019)

    Article  Google Scholar 

  38. Z. Huang, M.S. Madjarska, L. Xia, J.G. Doyle, K. Galsgaard, H. Fu, Explosive events on a subarcsecond scale in iris observations: a case study. Astrophys. J. 797(2), 88 (2014)

    Article  ADS  Google Scholar 

  39. Z. Huang, L. Xia, B. Li, M.S. Madjarska, Cool transition region loops observed by the interface region imaging spectrograph. Astrophys. J. 810(1), 46 (2015)

    Article  ADS  Google Scholar 

  40. Y.K. Rao, A.K. Srivastava, P. Kayshap, K. Wilhelm, B.N. Dwivedi, Plasma flows in the cool loop systems. Astrophys. J. 874(1), 56 (2019)

    Article  ADS  Google Scholar 

  41. A.K. Srivastava, Y.K. Rao, P. Konkol, K. Murawski, M. Mathioudakis, S.K. Tiwari, E. Scullion, J.G. Doyle, B.N. Dwivedi, Velocity response of the observed explosive events in the lower solar atmosphere. i. Formation of the flowing cool-loop system. Astrophys. J. 894(2), 155 (2020)

    Article  ADS  Google Scholar 

  42. Z. Huang, Q. Zhang, L. Xia, B. Li, W. Zhao, F. Hui, Heating at the remote footpoints as a brake on jet flows along loops in the solar atmosphere. Astrophys. J. 897(2), 113 (2020)

    Article  ADS  Google Scholar 

  43. G. Chintzoglou, B. DePontieu, J. Martínez-Sykora, T.M.D. Pereira, A. Vourlidas, S.T. Beltran, Bridging the gap: capturing the ly\(\alpha\) counterpart of a type-ii spicule and its heating evolution with vault 2.0 and iris observations. Astrophys. J. 857(1), 73 (2018)

    Article  ADS  Google Scholar 

  44. S. Kamio, W. Curdt, L. Teriaca, B. Inhester, S.K. Solanki, Observations of a rotating macrospicule associated with an x-ray jet. Astron. Astrophys. 510, L1 (2010)

    Article  ADS  Google Scholar 

  45. J. Liu, C.J. Nelson, B. Snow, Y. Wang, R. Erdélyi, Evidence of ubiquitous alfvén pulses transporting energy from the photosphere to the upper chromosphere. Nat. Commun. 10(1), 1–9 (2019)

    Google Scholar 

  46. E. Pariat, K. Dalmasse, C.R. DeVore, S.K. Antiochos, J.T. Karpen, Model for straight and helical solar jets-i parametric studies of the magnetic field geometry. Astron. Astrophys. 573, A130 (2015)

    Article  ADS  Google Scholar 

  47. L. Yang, H. Peter, J. He, T. Chuanyi, L. Wang, L. Zhang, L. Yan, Formation of cool and warm jets by magnetic flux emerging from the solar chromosphere to transition region. Astrophys. J. 852(1), 16 (2017)

    Article  ADS  Google Scholar 

  48. N. Nishizuka, M. Shimizu, T. Nakamura, K. Otsuji, T.J. Okamoto, Y. Katsukawa, K. Shibata, Giant chromospheric anemone jet observed with hinode and comparison with magnetohydrodynamic simulations: evidence of propagating alfvén waves and magnetic reconnection. Astrophys. J. 683(1), L83 (2008)

    Article  ADS  Google Scholar 

  49. H. Iijima, T. Yokoyama, A three-dimensional magnetohydrodynamic simulation of the formation of solar chromospheric jets with twisted magnetic field lines. Astrophys. J. 848(1), 38 (2017)

    Article  ADS  Google Scholar 

  50. Y. Suematsu, K. Shibata, T. Nishikawa, R. Kitai, Numerical hydrodynamics of the jet phenomena in the solar atmosphere. Sol. Phys. 75(1), 99–118 (1982)

    Article  ADS  Google Scholar 

  51. J. Martínez-Sykora, V. Hansteen, B. De Pontieu, M. Carlsson, Spicule-like structures observed in three-dimensional realistic magnetohydrodynamic simulations. Astrophys. J. 701(2), 1569 (2009)

    Article  ADS  Google Scholar 

  52. B. Singh, K. Sharma, A.K. Srivastava. On modelling the kinematics and evolutionary properties of pressure-pulse-driven impulsive solar jets. in Annales Geophysicae, volume 37, pp. 891–902. Copernicus GmbH (2019)

  53. I. Roussev, K. Galsgaard, R. Erdélyi, J.G. Doyle, Modelling of explosive events in the solar transition region in a 2d environment-i general reconnection jet dynamics. Astron. Astrophys. 370(1), 298–310 (2001)

    Article  ADS  Google Scholar 

  54. J.Y. Ding, M.S. Madjarska, J.G. Doyle, Q.M. Lu, K. Vanninathan, Z. Huang, Magnetic reconnection resulting from flux emergence: implications for jet formation in the lower solar atmosphere? Astron. Astrophys. 535, A95 (2011)

    Article  ADS  Google Scholar 

  55. D.E. Innes, L.-J. Guo, Y.-M. Huang, A. Bhattacharjee, Iris si iv line profiles: an indication for the plasmoid instability during small-scale magnetic reconnection on the sun. Astrophys. J. 813(2), 86 (2015)

    Article  ADS  Google Scholar 

  56. J.V. Hollweg, On the origin of solar spicules. Astrophys. J. 257, 345–353 (1982)

    Article  ADS  Google Scholar 

  57. T. Kudoh, K. Shibata, Alfvén wave model of spicules and coronal heating. Astrophys. J. 514(1), 493 (1999)

    Article  ADS  Google Scholar 

  58. B. Singh, A.K. Srivastava, K. Sharma, S.K. Mishra, B.N. Dwivedi, Quasi-periodic spicule-like cool jets driven by alfvén pulses. Mon. Not. R. Astron. Soc. 511(3), 4134–4146 (2022)

    Article  ADS  Google Scholar 

  59. S.P. James, R. Erdélyi, B. De Pontieu, Can ion-neutral damping help to form spicules? Astron. Astrophys. 406(2), 715–724 (2003)

    Article  ADS  Google Scholar 

  60. B. De Pontieu, S.W. McIntosh, M. Carlsson, V.H. Hansteen, T.D. Tarbell, C.J. Schrijver, A.M. Title, R.A. Shine, S. Tsuneta, Y. Katsukawa et al., Chromospheric alfvénic waves strong enough to power the solar wind. Science 318(5856), 1574–1577 (2007)

    Article  ADS  Google Scholar 

  61. S.W. McIntosh, B. DePontieu, M. Carlsson, V. Hansteen, P. Boerner, M. Goossens, Alfvénic waves with sufficient energy to power the quiet solar corona and fast solar wind. Nature 475(7357), 477–480 (2011)

    Article  ADS  Google Scholar 

  62. A.K. Srivastava, J.L. Ballester, P.S. Cally, M. Carlsson, M. Goossens, D.B. Jess, E. Khomenko, M. Mathioudakis, K. Murawski, T.V. Zaqarashvili. Chromospheric heating by magnetohydrodynamic waves and instabilities. J. Geophys. Res. 126(6), e029097} (2021). https://doi.org/10.1029/2020JA029097

  63. J. Martínez-Sykora, B. De Pontieu, V. Hansteen, Two-dimensional radiative magnetohydrodynamic simulations of the importance of partial ionization in the chromosphere. Astrophys. J. 753(2), 161 (2012)

    Article  ADS  Google Scholar 

  64. J. Martínez-Sykora, M. Szydlarski, V.H. Hansteen, B. De Pontieu, On the velocity drift between ions in the solar atmosphere. Astrophys. J. 900(2), 101 (2020)

    Article  ADS  Google Scholar 

  65. F. Zhang, S. Poedts, A. Lani, B. Kuźma, K. Murawski, Two-fluid modeling of acoustic wave propagation in gravitationally stratified isothermal media. Astrophys. J. 911(2), 119 (2021)

    Article  ADS  Google Scholar 

  66. E. Khomenko, M. Collados, Heating of the magnetized solar chromosphere by partial ionization effects. Astrophys. J. 747(2), 87 (2012)

    Article  ADS  Google Scholar 

  67. R. Soler, M. Carbonell, J.L. Ballester, Magnetoacoustic waves in a partially ionized two-fluid plasma. Astrophys. J. Suppl. Ser. 209(1), 16 (2013)

    Article  ADS  Google Scholar 

  68. E. Khomenko, On the effects of ion-neutral interactions in solar plasmas. Plasma Phys. Controll. Fusion 59(1), 014038 (2016)

    Article  ADS  Google Scholar 

  69. E. Khomenko, N. Vitas, M. Collados, A. De Vicente, Three-dimensional simulations of solar magneto-convection including effects of partial ionization. Astron. Astrophys. 618, A87 (2018)

    Article  Google Scholar 

  70. B.P. Braileanu, V.S. Lukin, E. Khomenko, A. De Vicente, Two-fluid simulations of waves in the solar chromosphere-ii. Propagation and damping of fast magneto-acoustic waves and shocks. Astron. Astrophys. 630, A79 (2019)

    Article  Google Scholar 

  71. J.E. Leake, V.S. Lukin, M.G. Linton, E.T. Meier, Multi-fluid simulations of chromospheric magnetic reconnection in a weakly ionized reacting plasma. Astrophys. J. 760(2), 109 (2012)

    Article  ADS  Google Scholar 

  72. S. Takasao, H. Isobe, K. Shibata, Numerical simulations of solar chromospheric jets associated with emerging flux. Publ. Astron. Soc. Jpn. 65(3), 62 (2013)

    Article  ADS  Google Scholar 

  73. L. Ni, B. Kliem, J. Lin, W. Ning, Fast magnetic reconnection in the solar chromosphere mediated by the plasmoid instability. Astrophys. J. 799(1), 79 (2015)

    Article  ADS  Google Scholar 

  74. A. Hillier, S. Takasao, N. Nakamura, The formation and evolution of reconnection-driven, slow-mode shocks in a partially ionised plasma. Astron. Astrophys. 591, A112 (2016)

    Article  ADS  Google Scholar 

  75. L. Ni, J. Lin, I.I. Roussev, B. Schmieder, Heating mechanisms in the low solar atmosphere through magnetic reconnection in current sheets. Astrophys. J. 832(2), 195 (2016)

    Article  ADS  Google Scholar 

  76. L. Ni, V.S. Lukin, N.A. Murphy, J. Lin, Magnetic reconnection in strongly magnetized regions of the low solar chromosphere. Astrophys. J. 852(2), 95 (2018)

    Article  ADS  Google Scholar 

  77. V. Hansteen, A. Ortiz, V. Archontis, M. Carlsson, T.M.D. Pereira, J. Pires Bjørgen, Ellerman bombs and uv bursts: transient events in chromospheric current sheets. Astron. Astrophys. 626, A33 (2019)

    Article  Google Scholar 

  78. E.G. Zweibel, E. Lawrence, J. Yoo, H. Ji, M. Yamada, L.M. Malyshkin, Magnetic reconnection in partially ionized plasmas. Phys. Plasmas 18(11), 111211 (2011)

    Article  ADS  Google Scholar 

  79. J. Hong, Y. Li, M.D. Ding, Q. Hao, Revisiting the spectral features of ellerman bombs and uv bursts. i. Radiative hydrodynamic simulations. Astrophys. J. 921(1), 50 (2021)

    Article  ADS  Google Scholar 

  80. J.L. Ballester, I. Alexeev, M. Collados, T. Downes, R.F. Pfaff, H. Gilbert, M. Khodachenko, E. Khomenko, I.F. Shaikhislamov, R. Soler et al., Partially ionized plasmas in astrophysics. Space Sci. Rev. 214(2), 1–149 (2018)

    Article  Google Scholar 

  81. P.A. González-Morales, E. Khomenko, N. Vitas, M. Collados, Joint action of hall and ambipolar effects in 3d magneto-convection simulations of the quiet sun-i. Dissipation and generation of waves. Astron. Astrophys. 642, A220 (2020)

    Article  ADS  Google Scholar 

  82. D. Wójcik, B. Kuźma, K. Murawski, Z.E. Musielak, Wave heating of the solar atmosphere without shocks. Astron. Astrophys. 635, A28 (2020)

    Article  ADS  Google Scholar 

  83. B. Kuźma, K. Murawski, S. Poedts, 3d numerical simulations of propagating two-fluid, torsional alfvén waves and heating of a partially ionized solar chromosphere. Mon. Not. R. Astron. Soc. 506(1), 989–996 (2021)

    Article  ADS  Google Scholar 

  84. Z. Huang, M.S. Madjarska, E.M. Scullion, L.-D. Xia, J. Gerard Doyle, T. Ray, Explosive events in active region observed by iris and sst/crisp. Mon. Not. R. Astron. Soc. 464(2), 1753–1761 (2017)

    Article  ADS  Google Scholar 

  85. H. Peter, H. Tian, W. Curdt, D. Schmit, D. Innes, B. De Pontieu, J. Lemen, A. Title, P. Boerner, N. Hurlburt, T.D. Tarbell, J.P. Wuelser, J. Martínez-Sykora, L. Kleint, L. Golub, S. McKillop, K.K. Reeves, S. Saar, P. Testa, C. Kankelborg, S. Jaeggli, M. Carlsson, V. Hansteen, Hot explosions in the cool atmosphere of the Sun. Science 346(6207), 1255726 (2014)

    Article  Google Scholar 

  86. L. Yan, H. Peter, J. He, H. Tian, L. Xia, L. Wang, T. Chuanyi, L. Zhang, F. Chen, K. Barczynski, Self-absorption in the solar transition. Region 811(1), 48 (2015)

    Google Scholar 

  87. Z. Ning, D.E. Innes, S.K. Solanki, Line profile characteristics of solar explosive event bursts. Astron. Astrophys. 419(3), 1141–1148 (2004)

    Article  ADS  Google Scholar 

  88. D.E. Innes, B. Inhester, W.I. Axford, K. Wilhelm, Bi-directional plasma jets produced by magnetic reconnection on the sun. Nature 386(6627), 811–813 (1997)

    Article  ADS  Google Scholar 

  89. D.E. Innes, P. Brekke, D. Germerott, K. Wilhelm. Bursts of explosive events in the solar network. in The First Results from SOHO, pp. 341–348. Springer (1997)

  90. A. Mignone, G. Bodo, S. Massaglia, T. Matsakos, O. Tesileanu, C. Zanni, A. Ferrari, Pluto: a numerical code for computational astrophysics. Astrophys. J. Suppl. Ser. 170(1), 228 (2007)

    Article  ADS  Google Scholar 

  91. A. Mignone, C. Zanni, P. Tzeferacos, B. Van Straalen, P. Colella, G. Bodo, The pluto code for adaptive mesh computations in astrophysical fluid dynamics. Astrophys. J. Suppl. Ser. 198(1), 7 (2011)

    Article  ADS  Google Scholar 

  92. P. Wołoszkiewicz, K. Murawski, Z.E. Musielak, A. Mignone. Numerical simulations of alfvén waves in the solar atmosphere with the pluto code. Control Cybern. 43(2), 321–335 (2014)

  93. E. Landi, G.D. Zanna, P.R. Young, K.P. Dere, H.E. Mason, Chianti-an atomic database for emission lines. xii. Version 7 of the database. Astrophys. J. 744(2), 99 (2011)

    Article  ADS  Google Scholar 

  94. K.P. Dere, E. Landi, P.R. Young, G.D. Zanna, M. Landini, H.E. Mason, Chianti–an atomic database for emission lines-ix. Ionization rates, recombination rates, ionization equilibria for the elements hydrogen through zinc and updated atomic data. Astron. Astrophys. 498(3), 915–929 (2009)

    Article  ADS  Google Scholar 

  95. L. Spitzer, Physics of Fully Ionized Gases (Courier Corporation, North Chelmsford, 2006)

    MATH  Google Scholar 

  96. E.H. Avrett, R. Loeser, Models of the solar chromosphere and transition region from sumer and hrts observations: formation of the extreme-ultraviolet spectrum of hydrogen, carbon, and oxygen. Astrophys. J. Suppl. Ser. 175(1), 229 (2008)

    Article  ADS  Google Scholar 

  97. B.C. Low, Three-dimensional structures of magnetostatic atmospheres. i-theory. Astrophys. J. 293, 31–43 (1985)

    Article  ADS  Google Scholar 

  98. P. Konkol, K. Murawski, T.V. Zaqarashvili, Numerical simulations of magnetoacoustic oscillations in a gravitationally stratified solar corona. Astron. Astrophys. 537, A96 (2012)

    Article  ADS  Google Scholar 

  99. G. Del Zanna, H.E. Mason, Solar uv and x-ray spectral diagnostics. Living Rev. Sol. Phys. 15(1), 1–278 (2018)

    Article  ADS  Google Scholar 

  100. K.P. Dere, J.-D.F. Bartoe, G.E. Brueckner, J. Ewing, P. Lund, Explosive events and magnetic reconnection in the solar atmosphere. J. Geophys. Res. Space Phys. 96(A6), 9399–9407 (1991)

    Article  ADS  Google Scholar 

  101. X. Fang, D. Yuan, T. Van Doorsselaere, R. Keppens, C. Xia, Modeling of reflective propagating slow-mode wave in a flaring loop. Astrophys. J. 813(1), 33 (2015)

    Article  ADS  Google Scholar 

  102. L.R. van der Voort, B. De Pontieu, T.M.D. Pereira, M. Carlsson, V. Hansteen, Heating signatures in the disk counterparts of solar spicules in interface region imaging spectrograph observations. Astrophys. J. Lett. 799(1), L3 (2015)

    Article  ADS  Google Scholar 

  103. B. De Pontieu, A.M. Title, J.R. Lemen, G.D. Kushner, D.J. Akin, B. Allard, T. Berger, P. Boerner, M. Cheung, C. Chou, J.F. Drake et al., The interface region imaging spectrograph (iris). Sol. Phys. 289(7), 2733–2779 (2014)

    Article  ADS  Google Scholar 

  104. G.A. Doschek, U. Feldman, J.D. Bohlin, Doppler wavelength shifts of transition zone lines measured in Skylab solar spectra. Astrophys J. 205, L177–L180 (1976)

  105. P. Antolin, Thermal instability and non-equilibrium in solar coronal loops: from coronal rain to long-period intensity pulsations. Plasma Phys. Controll. Fusion 62(1), 014016 (2019)

    Article  ADS  Google Scholar 

  106. J.J. González-Avilés, F.S. Guzmán, V. Fedun, G. Verth, Spicule jets in the solar atmosphere modeled with resistive mhd and thermal conduction. Astrophys. J. 897(2), 153 (2020)

    Article  ADS  Google Scholar 

  107. G.L. Withbroe, R.W. Noyes, Mass and energy flow in the solar chromosphere and corona. Ann. Rev. Astron. Astrophys. 15, 363–387 (1977)

    Article  ADS  Google Scholar 

  108. N.K. Panesar, A.C. Sterling, R.L. Moore, S.K. Tiwari, B. DePontieu, A.A. Norton, Iris and sdo observations of solar jetlets resulting from network-edge flux cancelation. Astrophys. J. Lett. 868(2), L27 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the reviewer for his/her valuable remarks that improved manuscript considerably. IRIS is a NASA small explorer mission developed and operated by LMSAL with mission operations executed at NASA Ames Research center and major contributions to downlink communications funded by ESA and the Norwegian Space Centre. The IRIS data are publicly available from the Lockheed Martin Solar and Astrophysics Laboratory (LMSAL) website (http://iris.lmsal.com/). The open source SolarSoft code package (http://www.lmsal.com/solarsoft/) is used for the initial data processing. Authors acknowledge the use of PLUTO code in our present work and use of PYTHON libraries for numerical data analysis. BS gratefully acknowledge the Human Resource Development Group (HRDG), Council of Scientific & Industrial research (CSIR) India for providing him a senior research scholar grant. S.K.T. gratefully acknowledges support by NASA contracts NNG09FA40C (IRIS), and NNM07AA01C (Hinode). AKS and MM acknowledge the support of UKIERI Grant for the support of their research. AKS also acknowledge his ISRO Grant (Ref-DS 2B-13-12(2)/26/2022-Scc2) for the support of his research works. AKS thank Piotr Konkol and Dr. González-Avilés for the helpful academic discussions. AKS and DY also acknowledge the ISSI-BJ regarding the science team project on “Oscillatory Processes in Solar and Stellar Coronae”. KM’s work was supported as part of project funded by National Science Centre (NCN) Grant Nos. 2017/25/B/ST9/00506 and 2020/37/B/ST9/00184.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Srivastava.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, A.K., Singh, B., Murawski, K. et al. Impulsive origin of solar spicule-like jets. Eur. Phys. J. Plus 138, 209 (2023). https://doi.org/10.1140/epjp/s13360-023-03833-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03833-5

Navigation