Skip to main content
Log in

Traversable wormhole solutions admitting Karmarkar condition in f(RT) theory

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we evaluate traversable wormhole solutions through Karmarkar condition in f(RT) theory, where T is the trace of the energy-momentum tensor and R represents the Ricci scalar. We develop a wormhole shape function for the static traversable wormhole geometry by using the embedding class-I technique. The resulting shape function is used to construct wormhole geometry that fulfills all the necessary conditions and joins the two asymptotically flat regions of the spacetime. We investigate the existence of viable traversable wormhole solutions for anisotropic matter configuration and examine the stable state of these solutions for different f(RT) gravity models. We analyze the graphical behavior of null energy bound to examine the presence of physically viable wormhole geometry. It is found that viable and stable traversable wormhole solutions exist in this modified theory of gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availibility

This manuscript has no associated data.

References

  1. L. Flamm, Physikalische Zeitschrift 17, 448 (1916)

    Google Scholar 

  2. A. Einstein, N. Rosen, Phys. Rev. 48, 73 (1935)

    Article  ADS  Google Scholar 

  3. J.A. Wheeler, Phys. Rev. 97, 511 (1955)

    Article  ADS  MathSciNet  Google Scholar 

  4. R.W. Fuller, J.A. Wheeler, Phys. Rev. 128, 919 (1962)

    Article  ADS  MathSciNet  Google Scholar 

  5. M.S. Morris, K.S. Thorne, Am. J. Phys. 56, 395 (1988)

    Article  ADS  Google Scholar 

  6. M. Visser, Phys. Rev. D 39, 3182 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  7. S.I. Vacaru et al., Phys. Lett. B 519, 249 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  8. G.P.F. Diaz, Phys. Rev. D 68, 084016 (2003)

    Article  ADS  Google Scholar 

  9. M.H. Dehghani, S.H. Hendi, Gen. Relativ. Gravit. 41, 1853 (2009)

    Article  ADS  Google Scholar 

  10. M. Jamil et al., Eur. Phys. J. C 67, 513 (2010)

    Article  ADS  Google Scholar 

  11. V. Dzhunushaliev et al., Phys. Rev. D 82, 045032 (2010)

    Article  ADS  Google Scholar 

  12. F. Canfora, N. Dimakis, A. Paliathanasis, Phys. Rev. D 96, 025021 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  13. M. Cataldo, L. Liempi, P. Rodríguez, Eur. Phys. J. C 77, 748 (2017)

    Article  ADS  Google Scholar 

  14. A.S. Jahromi, H. Moradpour, Int. J. Mod. Phys. D 27, 1850024 (2018)

    Article  ADS  Google Scholar 

  15. N. Godani, G.C. Samanta, Int. J. Mod. Phys. D 28, 1950039 (2019)

    Article  ADS  Google Scholar 

  16. L.P. Eisenhart, Riemannian Geometry (Princeton University Press, 1925)

    MATH  Google Scholar 

  17. K.R. Karmarkar, Proc. Indian Acad. Sci. A 27, 56 (1948)

    Article  Google Scholar 

  18. P. Bhar, K.N. Singh, T. Manna, Int. J. Mod. Phys. D 26, 1750090 (2017)

    Article  ADS  Google Scholar 

  19. P. Fuloria, N. Pant, Eur. Phys. J. A 53, 227 (2017)

    Article  ADS  Google Scholar 

  20. G. Abbas et al., Iran J. Sci. Technol. 42, 1659 (2018)

    Article  Google Scholar 

  21. S. Gedela, R.K. Bisht, N. Pant, Eur. Phys. J. A 54, 207 (2018)

    Article  ADS  Google Scholar 

  22. P.K. Kuhfittig, Ann. Phys. 392, 63 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  23. I. Fayyaz, M.F. Shamir, Chin. J. Phys. 66, 553 (2020)

    Article  Google Scholar 

  24. T. Harko et al., Phys. Rev. D 84, 024020 (2011)

    Article  ADS  Google Scholar 

  25. M.J.S. Houndjo, O.F. Piattella, Int. J. Mod. Phys. D 21, 1250024 (2012)

    Article  ADS  Google Scholar 

  26. M. Sharif, M. Zubair, J. Csom. Astropart. Phys. 03, 028 (2012)

    Article  ADS  Google Scholar 

  27. M. Jamil et al., Eur. Phys. J. C 72, 1999 (2012)

    Article  ADS  Google Scholar 

  28. A.F. Santos, Mod. Phys. A 28, 1350141 (2013)

    Article  ADS  Google Scholar 

  29. M. Sharif, M. Zubair, J. Phys. Soc. Jpn. 82, 064001 (2013)

    Article  ADS  Google Scholar 

  30. F.G. Alvarenga et al., Phys. Rev. D 87, 103526 (2013)

    Article  ADS  Google Scholar 

  31. H. Shabani, M. Farhoudi, Phys. Rev. D 88, 044048 (2013)

    Article  ADS  Google Scholar 

  32. C.P. Singh, V. Singh, Gen. Relativ. Gravit. 46, 1696 (2014)

    Article  ADS  Google Scholar 

  33. M. Sharif, M. Zubair, Gen. Relativ. Gravit. 46, 1723 (2014)

    Article  ADS  Google Scholar 

  34. H. Shabani, M. Farhoudi, Phys. Rev. D 90, 044031 (2014)

    Article  ADS  Google Scholar 

  35. I. Noureen, M. Zubair, Eur. Phys. J. C 75, 62 (2015)

    Article  ADS  Google Scholar 

  36. P.H.R.S. Moraes, Eur. Phys. J. C 75, 168 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  37. M. Zubair, I. Noureen, Eur. Phys. J. C 75, 265 (2015)

    Article  ADS  Google Scholar 

  38. I. Noureen et al., Eur. Phys. J. C 75, 323 (2015)

    Article  ADS  Google Scholar 

  39. M.F. Shamir, Eur. Phys. J. C 75, 354 (2015)

    Article  ADS  Google Scholar 

  40. E.H. Baffou et al., Astrophys. Space Sci. 356, 173 (2015)

    Article  ADS  Google Scholar 

  41. M. Zubair, S.M.A. Hassan, Astrophys. Space Sci. 361, 149 (2016)

    Article  ADS  Google Scholar 

  42. M.F. Shamir, A. Asghar, A. Malik, Fortschr. der Phys. 70, 2200134 (2021)

    Article  Google Scholar 

  43. F.S.N. Lobo, M.A. Oliveria, Phys. Rev. D 80, 104012 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  44. O. Bertolami, R.Z. Ferreira, Phys. Rev. D 85, 104050 (2012)

    Article  ADS  Google Scholar 

  45. T. Azizi, Int. J. Theor. Phys. 52, 3486 (2013)

    Article  Google Scholar 

  46. M. Sharif, Fatima, H. Ismat, Mod. Phys. Lett. A 30, 1550421 (2015)

    Article  Google Scholar 

  47. M. Sharif, S. Hussain, Chin. J. Phys. 61, 194 (2019)

    Article  Google Scholar 

  48. M.F. Shamir, A. Malik, G. Mustafa, Chin. J. Phys. 73, 634 (2021)

    Article  Google Scholar 

  49. G. Mustafa et al., Int. J. Geom. Methods Mod. Phys. 17, 2050103 (2020)

    Article  MathSciNet  Google Scholar 

  50. M.F. Shamir, I. Fayyaz, Eur. Phys. J. C 80, 1102 (2020)

    Article  ADS  Google Scholar 

  51. M. Sharif, M.Z. Gul, Eur. Phys. J. Plus 136, 503 (2021)

    Article  Google Scholar 

  52. T. Naz, A. Usman, M.F. Shamir, Ann. Phys. 429, 168491 (2021)

    Article  Google Scholar 

  53. G. Mustafa et al., Fortschr. der Phys. 69, 2100048 (2021)

    Article  ADS  Google Scholar 

  54. N. Godani, New Astron. 94, 101774 (2022)

    Article  Google Scholar 

  55. A. Malik et al., Chin. Phys. C 46, 095104 (2022)

    Article  ADS  Google Scholar 

  56. L.A. Anchordoqui et al., Phys. Rev. D 57, 829 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  57. G. Cognola et al., Phys. Rev. D 77, 046009 (2008)

    Article  ADS  Google Scholar 

  58. A.A. Starobinsky, J. Exp. Theor. Phys. 86, 157 (2007)

    Article  Google Scholar 

  59. S. Tsujikawa, Phys. Rev. D 77, 023507 (2008)

    Article  ADS  Google Scholar 

  60. H. Heintzmann, W. Hillebrandt, Astron. Astrophys. 38, 51 (1975)

    ADS  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. Zeeshan Gul for fruitful discussions during the write up of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sharif.

Appendix A

Appendix A

The field equations corresponding to the model (17) are

$$\begin{aligned} {\rho}= & {} \frac{1}{{e^{\nu }}2(2\lambda +1)(\lambda +1)}\bigg [(5\lambda +2) \bigg \{-\frac{f}{2}e^{\nu }+\bigg (\frac{\mu '}{r}-\frac{\mu '\nu '}{4} +\frac{\mu ''}{2} \nonumber \\{} & {} +\frac{\mu ^{\prime 2}}{4}\bigg )f_{R}+\bigg (\frac{\nu '}{2}-\frac{2}{r}\bigg ) f'_{R}-f''_{R}\bigg \}+\lambda \bigg \{\frac{f}{2}e^{\nu }+\bigg (\frac{\mu ''}{2}-\frac{\nu '}{r}-\frac{\mu '\nu '}{4} \nonumber \\{} & {} +\frac{\mu ^{\prime 2}}{4}\bigg )f_{R} +\bigg (\frac{\mu '}{2}+\frac{2}{r}\bigg )f'_{R}\bigg \}+2\lambda \bigg \{\frac{f}{2}e^{\nu }-\bigg (\frac{(\mu '-\nu ')r}{2}-e^{\nu }+1\bigg ) \nonumber \\{} & {} \times \frac{f_{R}}{r^{2}}+\bigg (\frac{\mu '-\nu '}{2}+\frac{1}{r}\bigg ) f'_{R}+f''_{R}\bigg \}\bigg ], \end{aligned}$$
(A1)
$$\begin{aligned} P_{r}= & {} \frac{1}{{e^{\nu }}2(2\lambda +1)(\lambda +1)}\bigg [-\lambda \bigg \{-\frac{f}{2}e^{\nu }+\bigg (\frac{\mu '}{r}-\frac{\mu '\nu '}{4} +\frac{\mu ''}{2} \nonumber \\{} & {} +\frac{\mu ^{\prime 2}}{4}\bigg )f_{R}+\bigg (\frac{\nu '}{2}-\frac{2}{r}\bigg ) f'_{R}-f''_{R}\bigg \}+(3\lambda +2)\bigg \{\frac{f}{2}e^{\nu }+\bigg (\frac{\mu ''}{2}-\frac{\nu '}{r} \nonumber \\{} & {} -\frac{\mu '\nu '}{4}+\frac{\mu ^{\prime 2}}{4}\bigg )f_{R} +\bigg (\frac{\mu '}{2}+\frac{2}{r}\bigg )f'_{R}\bigg \}-2\lambda \bigg \{\frac{f}{2}e^{\nu }+\bigg (\frac{(\mu '-\nu ')r}{2}\nonumber \\{} & {} -e^{\nu }+1\bigg ) \frac{-f_{R}}{r^{2}}+\bigg (\frac{\mu '-\nu '}{2}+\frac{1}{r}\bigg )f'_{R} +f''_{R}\bigg \}\bigg ], \end{aligned}$$
(A2)
$$\begin{aligned} P_{t}= & {} \frac{1}{{e^{\nu }}2(2\lambda +1)(\lambda +1)}\bigg [-\lambda \bigg \{-\frac{f}{2}e^{\nu }+\bigg (\frac{\mu '}{r}-\frac{\mu '\nu '}{4}+\frac{\mu ''}{2} \nonumber \\{} & {} +\frac{\mu ^{\prime 2}}{4}\bigg )f_{R} +\bigg (\frac{\nu '}{2}-\frac{2}{r}\bigg )f'_{R}-f''_{R}\bigg \}+\lambda \bigg \{\frac{f}{2}e^{\nu }+\bigg (\frac{\mu ''}{2}-\frac{\nu '}{r}-\frac{\mu '\nu '}{4} \nonumber \\{} & {} +\frac{\mu ^{\prime 2}}{4}\bigg )f_{R} +\bigg (\frac{\mu '}{2}+\frac{2}{r}\bigg )f'_{R}\bigg \}-2(\lambda +1) \bigg \{\frac{f}{2}e^{\nu }-\bigg (\frac{(\mu '-\nu ')r}{2}-e^{\nu }+1\bigg ) \nonumber \\{} & {} \times \frac{f_{R}}{r^{2}}+\bigg (\frac{\mu '-\nu '}{2}+\frac{1}{r}\bigg ) f'_{R}+f''_{R}\bigg \}\bigg ]. \end{aligned}$$
(A3)

The resulting field equations corresponding to the model 1 turn out to be

$$\begin{aligned} {\rho}= & {} \frac{1}{{e^{\nu }}2(2\lambda +1)(\lambda +1)}\bigg [(5\lambda +2)\bigg \{-\frac{f}{2}e^{\nu }+\bigg (\frac{\mu '}{r}-\frac{\mu '\nu '}{4}+\frac{\mu ''}{2}+\frac{\mu ^{\prime 2}}{4}\bigg ) \nonumber \\{} & {} \times \bigg (1-K e^{\frac{-R}{B}}\bigg )+\bigg (\frac{\nu '}{2}-\frac{2}{r}\bigg )\bigg (\frac{1}{B}K e^{\frac{-R}{B}}\bigg )R' -\bigg \{\bigg (\frac{1}{B}K e^{\frac{-R}{B}}\bigg )R''-\bigg (\frac{1}{B^{2}}K e^{\frac{-R}{B}}\bigg ) \nonumber \\{} & {} \times R^{\prime 2}\bigg \}\bigg \}+\lambda \bigg \{\frac{f}{2}e^{\nu }+\bigg (\frac{\mu ''}{2}-\frac{\nu '}{r}-\frac{\mu '\nu '}{4}+\frac{\mu ^{\prime 2}}{4}\bigg )(1-Ke^{\frac{-R}{B}})+\bigg (\frac{\mu '}{2}+\frac{2}{r}\bigg ) \nonumber \\{} & {} \times \bigg (\frac{1}{B}Ke^{\frac{-R}{B}}\bigg )R'\bigg \}+2\lambda \bigg \{\frac{f}{2}e^{\nu }+\bigg (\frac{(\mu '-\nu ')r}{2}-e^{\nu }+1\bigg ) \frac{(-1+K e^{\frac{-R}{B}})}{r^{2}} \nonumber \\{} & {} +\bigg (\frac{\mu '-\nu '}{2}+\frac{1}{r}\bigg )\bigg (\frac{1}{B}K e^{\frac{-R}{B}}\bigg )R'+\bigg \{\bigg (\frac{1}{B}K e^{\frac{-R}{B}}\bigg )R'' \nonumber \\{} & {} +\bigg (\frac{-1}{B^{2}}K e^{\frac{-R}{B}}\bigg )R^{\prime 2}\bigg \}\bigg \}\bigg ], \end{aligned}$$
(A4)
$$\begin{aligned} P_{r}= & {} \frac{1}{{e^{\nu }}2(2\lambda +1)(\lambda +1)}\bigg [-\lambda \bigg \{-\frac{f}{2}e^{\nu }+\bigg (\frac{\mu '}{r}-\frac{\mu '\nu '}{4}+\frac{\mu ''}{2}+\frac{\mu ^{\prime 2}}{4}\bigg ) \nonumber \\{} & {} \times \bigg (1-K e^{\frac{-R}{B}}\bigg )+\bigg (\frac{\nu '}{2}-\frac{2}{r}\bigg )\bigg (\frac{1}{B}K e^{\frac{-R}{B}}\bigg )R'-\bigg \{\bigg (\frac{1}{B}K e^{\frac{-R}{B}}\bigg )R'' \nonumber \\{} & {} +\bigg (\frac{-1}{B^{2}}K e^{\frac{-R}{B}}\bigg )R^{\prime 2}\bigg \}\bigg \}+(3\lambda +2) \bigg \{\frac{f}{2}e^{\nu }+\bigg (\frac{\mu ''}{2}-\frac{\nu '}{r}-\frac{\mu '\nu '}{4}+\frac{\mu ^{\prime 2}}{4}\bigg ) \nonumber \\{} & {} \times \bigg (1-K e^{\frac{-R}{B}}\bigg )+\bigg (\frac{\mu '}{2}+\frac{2}{r}\bigg )\bigg (\frac{1}{B}K e^{\frac{-R}{B}}\bigg )R'\bigg \}-2\lambda \bigg \{\frac{f}{2}e^{\nu }-\bigg (\frac{(\mu '-\nu ')r}{2} \nonumber \\{} & {} -e^{\nu }+1\bigg ) \frac{\bigg (1-K e^{\frac{-R}{B}}\bigg )}{r^{2}}+\bigg (\frac{\mu '-\nu '}{2}+\frac{1}{r}\bigg )\bigg (\frac{1}{B}K e^{\frac{-R}{B}}\bigg )R'+\bigg \{\bigg (\frac{1}{B}K e^{\frac{-R}{B}}\bigg ) \nonumber \\{} & {} \times R''+\bigg (\frac{-1}{B^{2}}K e^{\frac{-R}{B}}\bigg )R^{\prime 2}\bigg \}\bigg \}\bigg ], \end{aligned}$$
(A5)
$$\begin{aligned} P_{t}= & {} \frac{1}{{e^{\nu }}2(2\lambda +1)(\lambda +1)}\bigg [-\lambda \bigg \{-\frac{f}{2}e^{\nu }+\bigg (\frac{\mu '}{r}-\frac{\mu '\nu '}{4}+\frac{\mu ''}{2}+\frac{\mu ^{\prime 2}}{4}\bigg ) \nonumber \\{} & {} \times \bigg (1-K e^{\frac{-R}{B}}\bigg )+\bigg (\frac{\nu '}{2}-\frac{2}{r}\bigg )\bigg (\frac{1}{B}K e^{\frac{-R}{B}}\bigg )R'-\bigg \{\bigg (\frac{1}{B}K e^{\frac{-R}{B}}\bigg )R'' \nonumber \\{} & {} +\bigg (\frac{-1}{B^{2}}K e^{\frac{-R}{B}}\bigg )R^{\prime 2}\bigg \}\bigg \}+\lambda \bigg \{\frac{f}{2}e^{\nu }+\bigg (\frac{\mu ''}{2}-\frac{\nu '}{r}-\frac{\mu '\nu '}{4}+\frac{\mu ^{\prime 2}}{4}\bigg ) \nonumber \\{} & {} \times \bigg (1-K e^{\frac{-R}{B}}\bigg ) +\bigg (\frac{\mu '}{2}+\frac{2}{r}\bigg )\bigg (\frac{1}{B}K e^{\frac{-R}{B}}\bigg )R'\bigg \}-2(\lambda +1)\bigg \{\frac{f}{2}e^{\nu } \nonumber \\{} & {} -\bigg (\frac{(\mu '-\nu ')r}{2}-e^{\nu }+1\bigg )\frac{\bigg (1-K e^{\frac{-R}{B}}\bigg )}{r^{2}}+\bigg (\frac{\mu '-\nu '}{2}+\frac{1}{r}\bigg )\bigg (\frac{1}{B}K e^{\frac{-R}{B}}\bigg )R' \nonumber \\{} & {} +\bigg \{\bigg (\frac{1}{B}K e^{\frac{-R}{B}}\bigg )R''+\bigg (\frac{-1}{B^{2}}K e^{\frac{-R}{B}}\bigg )R^{\prime 2}\bigg \}\bigg \}\bigg ]. \end{aligned}$$
(A6)

The corresponding field equations corresponding to the model 2 are

$$\begin{aligned} {\rho}= & {} \frac{1}{{e^{\nu }}2(2\lambda +1)(\lambda +1)}\bigg [(5\lambda +2) \frac{1}{e^{\nu }}\bigg \{-\frac{f}{2}e^{\nu }+\bigg (\frac{\mu '}{r}- \frac{\mu '\nu '}{4}+\frac{\mu ''}{2} \nonumber \\{} & {} +\frac{\mu ^{\prime 2}}{4}\bigg )\bigg (1-\frac{2nR\gamma (1+\frac{R^{2}}{B^{2}})^{-1-n}}{B}\bigg ) +\bigg (\frac{\nu '}{2}-\frac{2}{r}\bigg )\bigg \{\frac{2n\gamma }{B(1+\frac{R^{2}}{B^{2}})^{1+n}} \nonumber \\{} & {} \times \bigg (\frac{(-2-2n)R^{2}}{B^{2}(1+\frac{R^{2}}{B^{2}})}-1\bigg ) R'\bigg \}-\bigg \{\frac{2n\gamma }{B(1+\frac{R^{2}}{B^{2}})^{1+n}}\bigg (\frac{(-2-2n) R^{2}}{B^{2}(1+\frac{R^{2}}{B^{2}})}-1\bigg ) \nonumber \\{} & {} \times R''+\frac{4nR\gamma }{B^{3}(1+\frac{R^{2}}{B^{2}})^{2+n}}\bigg ((3+ 3n)-\frac{(8+6n+2n^{2})R^{2}}{B^{2}(1+\frac{R^{2}}{B^{2}})}\bigg )R^{\prime 2} \bigg \}\bigg \} \nonumber \\{} & {} +\lambda \bigg \{\frac{f}{2}e^{\nu }+\bigg (\frac{\mu ''}{2}-\frac{\nu '}{r}-\frac{\mu '\nu '}{4}+\frac{\mu ^{\prime 2}}{4}\bigg )\bigg (1-\frac{2nR\gamma (1+\frac{R^{2}}{B^{2}})^{-1-n}}{B}\bigg ) \nonumber \\{} & {} +\bigg (\frac{\mu '}{2}+\frac{2}{r}\bigg )\bigg \{\frac{2n\gamma }{B(1 +\frac{R^{2}}{B^{2}})^{1+n}}\bigg (\frac{(-2-2n)R^{2}}{B^{2}(1+\frac{R^{2}}{B^{2}})}-1\bigg )R'\bigg \}\bigg \}+2\lambda \bigg \{\frac{f}{2 }e^{\nu } \nonumber \\{} & {} +\bigg (\frac{(\mu '-\nu ')r}{2}-e^{\nu }+1\bigg )\frac{\bigg (-1+\frac{2nR\gamma (1+\frac{R^{2}}{B^{2}})^{-1-n}}{B}\bigg )}{r^{2}}+\bigg (\frac{\mu '-\nu '}{2}+\frac{1}{r}\bigg ) \nonumber \\{} & {} \times \bigg \{\frac{2n\gamma }{B(1+\frac{R^{2}}{B^{2}})^{1+n}}\bigg (\frac{(-2-2n)R^{2}}{B^{2}(1+\frac{R^{2}}{B^{2}})}-1\bigg )R'\bigg \} +\bigg \{\frac{2n\gamma }{B(1+\frac{R^{2}}{B^{2}})^{1+n}} \nonumber \\{} & {} \times \bigg (\frac{(-2-2n)R^{2}}{B^{2}(1+\frac{R^{2}}{B^{2}})}-1\bigg ) R''+\frac{4nR\gamma }{B^{3}(1+\frac{R^{2}}{B^{2}})^{2+n}} \bigg ((3+3n) \nonumber \\{} & {} -\frac{(8+6n+2n^{2})R^{2}}{B^{2}(1+\frac{R^{2}}{B^{2}})} \bigg )R^{\prime 2}\bigg \}\bigg \}\bigg ], \end{aligned}$$
(A7)
$$\begin{aligned} P_{r}= & {} \frac{1}{{e^{\nu }}2(2\lambda +1)(\lambda +1)}\bigg [-\lambda \bigg \{-\frac{f}{2}e^{\nu }+\bigg (\frac{\mu '}{r}-\frac{\mu '\nu '}{4}+\frac{\mu ''}{2}+\frac{\mu ^{\prime 2}}{4}\bigg )\bigg (1 \nonumber \\{} & {} -\frac{2nR\gamma (1+\frac{R^{2}}{B^{2}})^{-1-n}}{B}\bigg )+\bigg (\frac{\nu '}{2}-\frac{2}{r} \bigg )\bigg \{\frac{2n\gamma }{B(1+\frac{R^{2}}{B^{2}})^{1+n}}\bigg (\frac{ (-2-2n)R^{2}}{B^{2}(1+\frac{R^{2}}{B^{2}})} \nonumber \\{} & {} -1\bigg )R'\bigg \}-\bigg \{\frac{2n\gamma }{B(1+\frac{R^{2}}{B^{2}})^{1+n}} \bigg (\frac{(-2-2n)R^{2}}{B^{2}(1+\frac{R^{2}}{B^{2}})}-1\bigg )R''+\frac{4nR\gamma }{B^{3}(1+\frac{R^{2}}{B^{2}})^{2+n}} \nonumber \\{} & {} \times \bigg ((3+3n)-\frac{(8+6n+2n^{2})R^{2}}{B^{2}(1+\frac{R^{2}}{B^{2} })}\bigg )R^{\prime 2}\bigg \}\bigg \}+(3\lambda +2)\bigg \{\frac{f}{2}e^{\nu }+\bigg (\frac{\mu ''}{2}-\frac{\nu '}{r} \nonumber \\{} & {} -\frac{\mu '\nu '}{4}+\frac{\mu ^{\prime 2}}{4}\bigg )\bigg (1-\frac{2nR\gamma (1+\frac{R^{2}}{B^{2}}) ^{-1-n}}{B}\bigg )+\bigg (\frac{\mu '}{2}+\frac{2}{r}\bigg )\bigg \{\frac{2n\gamma }{B(1+\frac{R^{2}}{B^{2}})^{1+n}} \nonumber \\{} & {} \times \bigg (\frac{(-2-2n)R^{2}}{B^{2}(1+\frac{R^{2}}{B^{2}})}-1\bigg ) R'\bigg \}\bigg \}-2\lambda \bigg \{\frac{f}{2}e^{\nu }+\bigg (\frac{(\mu '-\nu ') r}{2}-e^{\nu }+1\bigg ) \nonumber \\{} & {} \times \frac{\bigg (-1+\frac{2nR\gamma (1+\frac{R^{2}}{B^{2}})^{-1-n}}{B} \bigg )}{r^{2}}+\bigg (\frac{\mu '-\nu '}{2}+\frac{1}{r}\bigg )\bigg \{\frac{2n\gamma }{B(1+\frac{R^{2}}{B^{2}})^{1+n}} \nonumber \\{} & {} \times \bigg (\frac{(-2-2n)R^{2}}{B^{2}(1+\frac{R^{2}}{B^{2}})}-1\bigg )R' \bigg \}+\bigg \{\frac{2n\gamma }{B(1+\frac{R^{2}}{B^{2}})^{1+n}}\bigg (\frac{ (-2-2n)R^{2}}{B^{2}(1+\frac{R^{2}}{B^{2}})}-1\bigg )R'' \nonumber \\{} & {} +\frac{4nR\gamma }{B^{3}(1+\frac{R^{2}}{B^{2}})^{2+n}}\bigg ((3+3n)- \frac{(8+6n+2n^{2})R^{2}}{B^{2}(1+\frac{R^{2}}{B^{2}})}\bigg )R^{\prime 2} \bigg \}\bigg \}\bigg ], \end{aligned}$$
(A8)
$$\begin{aligned} P_{t}= & {} \frac{1}{{e^{\nu }}2(2\lambda +1)(\lambda +1)}\bigg [-\lambda \bigg \{-\frac{f}{2}e^{\nu }+\bigg (\frac{\mu '}{r}-\frac{\mu '\nu '}{4}+\frac{\mu ''}{2}+\frac{\mu ^{\prime 2}}{4}\bigg )\bigg (1 \nonumber \\{} & {} -\frac{2nR\gamma (1+\frac{R^{2}}{B^{2}})^{-1-n}}{B}\bigg )+\bigg (\frac{\nu '}{2}-\frac{2}{r}\bigg )\bigg \{\frac{2n\gamma }{B(1+\frac{R^{2}}{B^{2}})^{1+n}}\bigg (\frac{(-2-2n)R^{2}}{B^{2}(1+\frac{R^{2}}{B^{2}})} \nonumber \\{} & {} -1\bigg )R'\bigg \}-\bigg \{\frac{2n\gamma }{B(1+\frac{R^{2}}{B^{2}} )^{1+n}}\bigg (\frac{(-2-2n)R^{2}}{B^{2}(1+\frac{R^{2}}{B^{2}})}-1 \bigg )R''+\frac{4nR\gamma }{B^{3}(1+\frac{R^{2}}{B^{2}})^{2+n}} \nonumber \\{} & {} \times \bigg ((3+3n)-\frac{(8+6n+2n^{2})R^{2}}{B^{2}(1+\frac{R^{2}}{B^{2}})}\bigg )R^{\prime 2}\bigg \}\bigg \}+\lambda \bigg \{\frac{f}{2}e^{\nu } +\bigg (\frac{\mu ''}{2}-\frac{\nu '}{r} \nonumber \\{} & {} -\frac{\mu '\nu '}{4}+\frac{\mu ^{\prime 2}}{4}\bigg )\bigg (1-\frac{2nR \gamma (1+\frac{R^{2}}{B^{2}})^{-1-n}}{B}\bigg )+\bigg (\frac{\mu '}{2} +\frac{2}{r}\bigg )\bigg \{\frac{2n\gamma }{B(1+\frac{R^{2}}{B^{2}})^{1+n}} \nonumber \\{} & {} \times \bigg (\frac{(-2-2n)R^{2}}{B^{2}(1+\frac{R^{2}}{B^{2}})}-1\bigg ) R'\bigg \}\bigg \}-2(\lambda +1)\bigg \{\frac{f}{2}e^{\nu }+\bigg (\frac{ (\mu '-\nu ')r}{2}-e^{\nu }+1\bigg ) \nonumber \\{} & {} \times \frac{\bigg (-1+\frac{2nR\gamma (1+\frac{R^{2}}{B^{2}})^{-1-n}}{B}\bigg )}{r^{2}}+\bigg (\frac{\mu '-\nu '}{2}+\frac{1}{r}\bigg )\bigg \{\frac{2n\gamma }{B(1+\frac{R^{2}}{B^{2}})^{1+n}} \nonumber \\{} & {} \times \bigg (\frac{(-2-2n)R^{2}}{B^{2}(1+\frac{R^{2}}{B^{2}})} -1\bigg )R'\bigg \}+\bigg \{\frac{2n\gamma }{B(1+\frac{R^{2}}{B^{2}}) ^{1+n}}\bigg (\frac{(-2-2n)R^{2}}{B^{2}(1+\frac{R^{2}}{B^{2}})} -1\bigg )R'' \nonumber \\{} & {} +\frac{4nR\gamma }{B^{3}(1+\frac{R^{2}}{B^{2}})^{2+n}}\bigg ( (3+3n)-\frac{(8+6n+2n^{2})R^{2}}{B^{2}(1+\frac{R^{2}}{B^{2}})} \bigg )R^{\prime 2}\bigg \}\bigg \}\bigg ]. \end{aligned}$$
(A9)

The field equations for the model 3 take the following form

$$\begin{aligned} {\rho}= & {} \frac{1}{{e^{\nu }}2(2\lambda +1)(\lambda +1)}\bigg [(5\lambda +2) \bigg \{-\frac{f}{2}e^{\nu }+\bigg (\frac{\mu '}{r}-\frac{\mu '\nu '}{4}+\frac{\mu ''}{2}+\frac{\mu ^{\prime 2}}{4}\bigg ) \nonumber \\{} & {} \times \bigg (1-\omega \sec h^{2}\bigg (\frac{R}{B}\bigg )\bigg )+\bigg (\frac{\nu '}{2}-\frac{2}{r}\bigg )\frac{2\omega \sec h^{2}(\frac{R}{B})\tanh (\frac{R}{B})}{B}R' \nonumber \\{} & {} -\bigg \{\frac{2\omega \sec h^{2}(\frac{R}{B})\tanh (\frac{R}{B})}{B}R''+\frac{2\omega \sec h^{4}(\frac{R}{B})}{B^{2}}\bigg (1-2\sinh ^ {2}\bigg (\frac{R}{B}\bigg )\bigg )R^{\prime 2}\bigg \}\bigg \} \nonumber \\{} & {} +\lambda \bigg \{\frac{f}{2}e^{\nu }+\bigg (\frac{\mu ''}{2}-\frac{\nu '}{r}-\frac{\mu '\nu '}{4}+\frac{\mu ^{\prime 2}}{4}\bigg )\bigg (1- \omega \sec h^{2}\bigg (\frac{R}{B}\bigg )\bigg )+\bigg (\frac{\mu '}{2} +\frac{2}{r}\bigg ) \nonumber \\{} & {} \times \frac{2\omega \sec h^{2}(\frac{R}{B})\tanh (\frac{R}{B})}{B}R'\bigg \}+2\lambda \bigg \{\frac{f}{2}e^{\nu }+\bigg (\frac{ (\mu '-\nu ')r}{2}-e^{\nu }+1\bigg ) \nonumber \\{} & {} \times \frac{\bigg (-1+\omega \sec h^{2}\bigg (\frac{R}{B}\bigg )\bigg )}{r^{2}}+\bigg (\frac{\mu '-\nu '}{2}+\frac{1}{r}\bigg )\bigg (\frac{2 \omega \sec h^{2}(\frac{R}{B})\tanh (\frac{R}{B})}{B}\bigg ) \nonumber \\{} & {} \times R'+\bigg \{\frac{2\omega \sec h^{2}(\frac{R}{B})\tanh (\frac{R}{B})}{B}R''+\frac{2\omega \sec h^{4}(\frac{R}{B})}{B^{2}} \nonumber \\{} & {} \times \bigg (1-2\sinh ^{2}\bigg (\frac{R}{B}\bigg )\bigg )R^{\prime 2}\bigg \} \bigg \}\bigg ], \end{aligned}$$
(A10)
$$\begin{aligned} P_{r}= & {} \frac{1}{{e^{\nu }}2(2\lambda +1)(\lambda +1)}\bigg \{-\frac{f}{2}e^{\nu }+\bigg (\frac{\mu '}{r}-\frac{\mu '\nu '}{4}+\frac{\mu ''}{2}+\frac{\mu ^{\prime 2}}{4}\bigg )\bigg (1 \nonumber \\{} & {} -\omega \sec h^{2}\bigg (\frac{R}{B}\bigg )\bigg )+\bigg (\frac{\nu '}{2} -\frac{2}{r}\bigg )\frac{2\omega \sec h^{2}(\frac{R}{B})\tanh (\frac{R}{B})}{B}R' \nonumber \\{} & {} -\bigg \{\frac{2\omega \sec h^{2}(\frac{R}{B})\tanh (\frac{R}{B})}{B}R''+\frac{2\omega \sec h^{4}(\frac{R}{B})}{B^{2}}\bigg (1-2\sinh ^ {2}\bigg (\frac{R}{B}\bigg )\bigg )R^{\prime 2}\bigg \}\bigg \} \nonumber \\{} & {} +(3\lambda +2)\bigg \{\frac{f}{2}e^{\nu }+\bigg (\frac{\mu ''}{2} -\frac{\nu '}{r}-\frac{\mu '\nu '}{4}+\frac{\mu ^{\prime 2}}{4}\bigg ) \bigg (1-\omega \sec h^{2}\bigg (\frac{R}{B}\bigg )\bigg ) \nonumber \\{} & {} +\bigg (\frac{\mu '}{2}+\frac{2}{r}\bigg )\frac{2\omega \sec h^{2}(\frac{R}{B})\tanh (\frac{R}{B})}{B}R'\bigg \}-2\lambda \bigg \{\frac{f}{2}e^{\nu }+\bigg (\frac{(\mu '-\nu ')r}{2} \nonumber \\{} & {} -e^{\nu }+1\bigg )\frac{\bigg (-1+\omega \sec h^{2}\bigg (\frac{R}{B}\bigg )\bigg )}{r^{2}}+\bigg (\frac{\mu '-\nu '}{2} +\frac{1}{r}\bigg )\bigg (\frac{2\omega \sec h^{2}(\frac{R}{B}) \tanh (\frac{R}{B})}{B}\bigg )R' \nonumber \\{} & {} +\bigg \{\frac{2\omega \sec h^{2}(\frac{R}{B})\tanh (\frac{R}{B})}{B}R'' \nonumber \\{} & {} +\frac{2\omega \sec h^{4}(\frac{R}{B})}{B^{2}}\bigg (1-2\sinh ^ {2}\bigg (\frac{R}{B}\bigg )\bigg )R^{\prime 2}\bigg \}\bigg \}\bigg ], \end{aligned}$$
(A11)
$$\begin{aligned} P_{t}= & {} \frac{1}{{e^{\nu }}2(2\lambda +1)(\lambda +1)}\bigg [-\lambda \bigg \{-\frac{f}{2}e^{\nu }+\bigg (\frac{\mu '}{r}-\frac{\mu '\nu '}{4}+\frac{\mu ''}{2}+\frac{\mu ^{\prime 2}}{4}\bigg ) \nonumber \\{} & {} \times \bigg (1-\omega \sec h^{2}\bigg (\frac{R}{B}\bigg )\bigg )+\bigg (\frac{\nu '}{2}-\frac{2}{r}\bigg )\frac{2\omega \sec h^{2}(\frac{R}{B})\tanh (\frac{R}{B})}{B}R' \nonumber \\{} & {} -\bigg \{\frac{2\omega \sec h^{2}(\frac{R}{B})\tanh (\frac{R}{B})}{B}R''+\frac{2\omega \sec h^{4}(\frac{R}{B})}{B^{2}}\bigg (1-2\sinh ^{2} \bigg (\frac{R}{B}\bigg )\bigg )R^{\prime 2}\bigg \}\bigg \} \nonumber \\{} & {} +\lambda \bigg \{\frac{f}{2}e^{\nu }+\bigg (\frac{\mu ''}{2}-\frac{\nu '}{r}-\frac{\mu '\nu '}{4}+\frac{\mu ^{\prime 2}}{4}\bigg )\bigg (1-\omega \sec h^{2}\bigg (\frac{R}{B}\bigg )\bigg )+\bigg (\frac{\mu '}{2}+\frac{2}{r}\bigg ) \nonumber \\{} & {} \times \frac{2\omega \sec h^{2}(\frac{R}{B})\tanh (\frac{R}{B})}{B}R' \bigg \}-2(\lambda +1)\bigg \{\frac{f}{2}e^{\nu }+\bigg (\frac{(\mu '-\nu ') r}{2}-e^{\nu }+1\bigg ) \nonumber \\{} & {} \times \frac{\bigg (-1+\omega \sec h^{2}\bigg (\frac{R}{B}\bigg )\bigg )}{r^{2}}+\bigg (\frac{\mu '-\nu '}{2}+\frac{1}{r}\bigg )\bigg (\frac{2\omega \sec h^{2}(\frac{R}{B})\tanh (\frac{R}{B})}{B}\bigg )R' \nonumber \\{} & {} +\bigg \{\frac{2R''\omega \sec h^{2}(\frac{R}{B})\tanh (\frac{R}{B})}{B} \nonumber \\{} & {} +\frac{2\omega \sec h^{4}(\frac{R}{B})\bigg (1-2\sinh ^{2} \bigg (\frac{R}{B}\bigg )\bigg )R^{\prime 2}}{B^{2}}\bigg \}\bigg \}\bigg ]. \end{aligned}$$
(A12)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharif, M., Fatima, A. Traversable wormhole solutions admitting Karmarkar condition in f(RT) theory. Eur. Phys. J. Plus 138, 196 (2023). https://doi.org/10.1140/epjp/s13360-023-03825-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03825-5

Navigation