Skip to main content
Log in

An optimal system, invariant solutions, conservation laws, and complete classification of Lie group symmetries for a generalized (2+1)-dimensional Davey–Stewartson system of equations for the wave propagation in water of finite depth

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The nonlinear Schrödinger equation has had several applications in the mean-field regime, including planar waveguides, nonlinear optical fibers, and Bose-Einstein condensates contained in highly anisotropic cigar-shaped traps. We investigate wave propagation dynamics in water of finite depth using the generalized Davey–Stewartson system of equations due to gravity force and surface tension. Finally, we study the governing model with full nonlinearity using the Lie symmetry approach. The generalized Davey–Stewartson equations are used in this work to obtain a variety of closed-form invariant solutions. Two stages of Lie symmetry reduction were used to produce the desired analytical solutions. Moreover, we will derive Lie symmetry generators and Lie symmetry groups, followed by a derivation of the one-dimensional optimal system for subalgebras. This optimal system leads to specific symmetry reductions. By means of these symmetry reductions, we can get analytical solutions, such as rational solutions, soliton solutions, and solutions based on arbitrary independent functional parameters. In addition, using the new conservation theorem and Noether operators, we derive conservation laws for the DS system of equations as well. A differential equation can be analyzed using these conservation laws to determine its internal properties, existence, and uniqueness. Symbolic computations are carried out using Mathematica and Maple software packages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available within the article.

References

  1. R. Hirota, Direct Methods in Soliton Theory (Springer, Berlin, 1980), pp.157–176

    Google Scholar 

  2. S. Kumar, B. Mohan, A study of multi-soliton solutions, breather, lumps, and their interactions for Kadomtsev-Petviashvili equation with variable time cofficient using Hirota method. Phys. Scr. 96(12), 125255 (2021)

    Article  ADS  Google Scholar 

  3. S. Kumar, B. Mohan, A generalized nonlinear fifth-order KdV-type equation with multiple soliton solutions: Painlevé analysis and Hirota Bilinear technique. Phys. Scr. 97(12), 125214 (2022)

    Article  ADS  Google Scholar 

  4. J.S. He, L. Zhang, Y. Cheng, Y.S. Li, Determinant representation of darboux transformation for the akns system. Sci. China. Ser. A 49(12), 1867–1878 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Qiu, J. He, Y. Zhang, K. Porsezian, The Darboux transformation of the Kundu-Eckhaus equation. Proc. R. Soc. A 471, 20150236 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. G.W. Bluman, J.D. Cole, Similarity Methods for Differential Equations (Springer-Verlag, New York, 1974)

    Book  MATH  Google Scholar 

  7. S. Lie, Theorie der Transformationsgruppen I. Math. Ann. 16, 441–528 (1880)

    Article  MathSciNet  MATH  Google Scholar 

  8. S. Kumar, S.K. Dhiman, Lie symmetry analysis, optimal system, exact solutions and dynamics of solitons of a (3 + 1)-dimensional generalised BKP-Boussinesq equation. Pramana - J. Phys. 96, 31 (2022)

    Article  ADS  Google Scholar 

  9. S.K. Dhiman, S. Kumar, Different dynamics of invariant solutions to a generalized (3+1)-dimensional Camassa-Holm- Kadomtsev-Petviashvili equation arising in shallow water-waves. J. Ocean Eng. Sci. (2022). https://doi.org/10.1016/j.joes.2022.06.019

    Article  Google Scholar 

  10. S. Kumar, S.K. Dhiman, A. Chauhan, Symmetry reductions, generalized solutions and dynamics of wave profiles for the (2+1)-dimensional system of Broer-Kaup-Kupershmidt (BKK) equations. Math. Comput. Simul. 196, 319–335 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Kumar, H. Almusawa, S.K. Dhiman, M.S. Osman, A. Kumar, A study of Bogoyavlenskii’s (2+1)-dimensional breaking soliton equation: lie symmetry, dynamical behaviors and closed-form soltions. Results Phys. 29, 104793 (2021)

    Article  Google Scholar 

  12. R. Kumar, R.S. Verma, Dynamics of invariant solutions of mKdV-ZK arising in a homogeneous magnetised plasma. Nonlinear Dyn. (2022). https://doi.org/10.1007/s11071-022-07389-4

    Article  Google Scholar 

  13. M. Kumar, K. manju, Closed form invariant solutions of (2+1)-dimensional extended shallow water wave equation via Lie approach. Eur. Phys. J. Plus 135, 803 (2020)

    Article  Google Scholar 

  14. V.O. Vakhnenko, E.J. Parkes, A.J. Morrison, A bäcklund transformation and the inverse scattering transform method for the generalised Vakhnenko equation. Chaos Solitons Fractals 17(4), 683–692 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. G.F. Yu, H.W. Tam, A vector asymmetrical NNV equation: soliton solutions, bilinear Bäcklund transformation and Lax pair. J. Math. Anal. Appl. 344(2), 593–600 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. W.X. Ma, A. Abdeljabbar, A bilinear Bäcklund transformation of a (3+1)-dimensional generalized KP equation. Appl. Math. Lett. 25(10), 1500–1504 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. W. Malfliet, W. Hereman, The tanh method: exact solutions of nonlinear evolution and wave equations. Phys. Scr. 54(6), 563–568 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. N.H. Ibragimov, A new conservation theorem. J. Math. Anal. Appl. 333, 311–28 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. W.X. Ma, Matrix integrable fourth-order nonlinear Schrödinger equations and their exact soliton solutions. Chin. Phys. Lett. 39, 100201 (2022)

    Article  ADS  Google Scholar 

  20. W.X. Ma, Matrix integrable fifth-order mKdV equations and their soliton solutions. Chin. Phys. B 32, 020201 (2023)

    Article  ADS  Google Scholar 

  21. W.X. Ma, Conservation laws by symmetries and adjoint symmetries. Discret. Contin. Dyn. Syst. Ser. S 11(4), 707–721 (2018)

    MathSciNet  MATH  Google Scholar 

  22. A. Davey, K. Stewartson, On three-dimensional packets of surface waves. Proc. R. Soc. A Math. Phys. Eng. Sci. 338(1613), 101–110 (1974)

    ADS  MathSciNet  MATH  Google Scholar 

  23. K. Boateng, W. Yang, W.O. Apeanti, D. Yaro, New exact solutions and modulation instability for the nonlinear (2+1)-dimensional Davey-Stewartson system of equation. Adv. Math. Phys. (2019). https://doi.org/10.1155/2019/3879259

    Article  MathSciNet  MATH  Google Scholar 

  24. G. Ebadi, A. Biswas, The \(\frac{G^{\prime }}{G}\) method and 1-soliton solution of the Davey-Stewartson equation. Math. Comput. Modell. 53, 694–698 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Z. Zhou, W.X. Ma, R. Zhou, Finite-dimensional integrable systems associated with the Davey-Stewartson I equation. Nonlinearity 14, 701–717 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. G.W. Bluman, J.D. Cole, Similarity Methods for Differential Equations (Springer, New York, 1974)

    Book  MATH  Google Scholar 

  27. P.J. Olver, Applications of Lie Groups to Differential Equations (Springer-Verlag, New York, 2000)

    MATH  Google Scholar 

  28. P.J. Olver, Applications of Lie Groups to Differential Equations (Springer-Verlag, New York, 1993)

    Book  MATH  Google Scholar 

  29. X. Hu, Y. Li, Y. Chen, A direct algorithm of one dimensional optimal system for the group invariant solutions. J. Math. Phys. 56, 053504 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. N.H. Ibragimov, Nonlinear self-adjointness and conservation laws. J. Phys. A: Math. Theor. 44, 432002 (2011)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the Editor and referees for their supportive and constructive comments. The author, Sachin Kumar, is grateful for the financial support provided by “SERB-DST”, New Delhi, India under the EEQ scheme with reference number EEQ/2020/000238.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shubham Kumar Dhiman or Sachin Kumar.

Ethics declarations

Conflict of interest

There is no conflict of interest in this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhiman, S.K., Kumar, S. An optimal system, invariant solutions, conservation laws, and complete classification of Lie group symmetries for a generalized (2+1)-dimensional Davey–Stewartson system of equations for the wave propagation in water of finite depth. Eur. Phys. J. Plus 138, 195 (2023). https://doi.org/10.1140/epjp/s13360-023-03818-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03818-4

Navigation