Skip to main content
Log in

A nonrelativistic study of a non-local form of generalized uncertainty principle

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

We consider the modification of the linear momentum based on the non-locality in generalized uncertainty principle approach. We calculate the deformed commutation relation between position and momentum. Then, we show how this generalization of the commutation relation affects the behavior of the related nonrelativistic system in an exact analytical manner. The extreme values of energy and wave length in terms of Planck scale are calculated and a comparison with present results is made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability Statements

All data generated or analyzed during this study are included in this published article.

References

  1. K. Konishi, G. Paffuti, P. Provero, Phys. Lett. B 234, 276 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  2. M. Maggiore, Phys. Lett. B 304, 65 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  3. J.L. Cortes, J. Gamboa, Phys. Rev. D 71, 065015 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  4. S. Hossenfelder, Cass. Quant. Grav. 25, 038003 (2008)

    Article  Google Scholar 

  5. A.F. Ali, S. Das, E.C. Vagenas, Phys. Rev. D 84, 044013 (2011)

    Article  ADS  Google Scholar 

  6. S. Hossenfelder, Liv. Rev. Rel. 16, 20 (2013)

    Google Scholar 

  7. K. Nozari, M. Karami, Mod. Phys. Lett. A 20, 3095 (2005)

    Article  ADS  Google Scholar 

  8. A.F. Ali, S. Das, E.C. Vagenas, Phys. Lett. B 678, 497 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  9. T.K. Jana, P. Roy, Mod. Phys. Lett. A 373, 1239 (2009)

    Article  Google Scholar 

  10. L. Menculini, O. Panella and P. Roy, Phys. Rev. D 87, 065017 (2013)

  11. P. Pedram, Phys. Lett. B 718, 638 (2012)

    Article  ADS  Google Scholar 

  12. B.J. Carr, J. Mureika, P. Nicolini, JHEP 1507, 052 (2015)

    Article  ADS  Google Scholar 

  13. P. Bargueno, E.C. Vagenas, Phys. Lett. B 742, 15 (2015)

    Article  ADS  Google Scholar 

  14. S. Masood et al., Phys. Lett. B 763, 218 (2016)

    Article  ADS  Google Scholar 

  15. E.C. Vagenas, S.M. Alsaleh, A.F. Ali, Eur. Phys. Lett. 120, 40001 (2017)

    Article  ADS  Google Scholar 

  16. J. P. Bruneton and J. Larena, Gen. Rel. Grav. (2017) 49

  17. P. Bosso, S. Das, Ann. Phys. 383, 416 (2017)

    Article  ADS  Google Scholar 

  18. Y.C. Ong, Phys. Lett. B 785, 217 (2018)

    Article  ADS  Google Scholar 

  19. F. Scardigli et al., Eur. Phys. J. C 78, 728 (2018)

    Article  ADS  Google Scholar 

  20. S. Zarrinkamar, H. Panahi, S.A. Khorram-Hosseini, Few-Body Syst. 59, 1 (2018)

    Article  ADS  Google Scholar 

  21. P. Bosso, Phys. Rev. D 97, 126010 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  22. W.S. Chung, H. Hassanabadi, Eur. Phys. J. C 79, 213 (2019)

    Article  ADS  Google Scholar 

  23. E. Maghsoodi, H. Hassanabadi, and W.S. Chung 79, 358 (2019)

  24. W.S. Chung, H. Hassanabadi, Phys. Lett. B 793, 451 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  25. O. Yesiltas, Eur. Phys. J. Plus 134 (2019)

  26. V. Tyagi, S. K. and B. P. Mandal, Eurphys. Lett. 128, 30004 (2019)

  27. V. Todorinov, P. Bosso, S. Das, Ann. Phys. 405, 92 (2019)

    Article  ADS  Google Scholar 

  28. S.A. Khorram-Hosseini, S. Zarrinkamar, H. Panahi, Pramana 92, 53 (2019)

    Article  ADS  Google Scholar 

  29. S.A. Khorram-Hosseini, H. Panahi, S. Zarrinkamar, Int. J. Theor. Phys. 59, 2617 (2020)

    Article  Google Scholar 

  30. V.E. Kuzmichev, V.V. Kuzmichev, Eur. Phys. J. C 80, 248 (2020)

    Article  ADS  Google Scholar 

  31. R. Casadio, F. Scardigli, Phys. Lett. B 807, 135558 (2020)

    Article  MathSciNet  Google Scholar 

  32. F. Wagner, Phys Rev. D 104, 126010 (2021)

    Article  ADS  Google Scholar 

  33. G.G. Luciano, Eur. Phys. J. C 81, 672 (2021)

    Article  ADS  Google Scholar 

  34. P. Bosso, G.G. Luciano, Eur. Phys. J. C 81, 982 (2021)

    Article  ADS  Google Scholar 

  35. P. Bosso, S. Das, V. Todorinov, Ann. Phys. 424, 168350 (2021)

    Article  Google Scholar 

  36. S. Das et al., Phys. Lett. B 824, 136841 (2022)

    Article  Google Scholar 

  37. H. Chen et al., Phys. Lett. B 827, 136994 (2022)

    Article  Google Scholar 

  38. M.A. Anacleto et al., Ann. Phys. 440, 168837 (2022)

    Article  Google Scholar 

  39. A. Kempf, G. Mangano, R.B. Mann, Phys. Rev. D 52, 1108 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  40. M. Khodadi et al., Prog. Teor. Phys. 5, 053E03 (2019)

    Google Scholar 

  41. K. Nozari, A. Etemadi, Phys. Rev. D 85, 104029 (2012)

    Article  ADS  Google Scholar 

  42. N. Sadeghnezhad, Chin. J. Phys. 54, 555 (2016)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Panahi.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorram-Hosseini, S.A., Panahi, H. & Zarrinkamar, S. A nonrelativistic study of a non-local form of generalized uncertainty principle. Eur. Phys. J. Plus 138, 131 (2023). https://doi.org/10.1140/epjp/s13360-023-03728-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03728-5

Navigation