Skip to main content
Log in

Gravitational time advancement effect in Bumblebee gravity for Earth bound systems

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

This paper is a novel application of the new effect of gravitational time advancement or negative time delay, first predicted for static black holes (spin \(a=0\)), that can be regarded as complementary to the well-known effect of positive Shapiro time delay. We shall extend the Shapiro time delay formalism up to third PPN order using the recently proposed spinning (\(a\ne 0\)) black hole solution of the Lorentz symmetry breaking (LSB) Bumblebee gravity that is believed to reveal signatures of quantum gravity at low energies. Adopting two practical examples of signal propagation along Earth–Moon and Earth–Satellite configurations, we shall calculate the influence of the Bumblebee parameter \(\ell \) on time advancement using terms up to the second PPN order \(\varpropto aM\) and \(M^{2} \) as the Bumblebee solution is valid only up to first order in a. It is shown that there is a critical radial distance \(r_{c}\) above the Earth, where the Shapiro delay vanishes, and beyond \(r_{c}\) the delay becomes negative, i.e., time advancement begins to set in, leading to the intriguing consequence that the measured LLR distance to Moon or any Satellite becomes less than the zeroth order Euclidean distance. It is shown that the LSB correction arises from the conical geometry of the massless Bumblebee space-time leading to upper bounds on the correction to the zeroth order Euclidean time interval as \(\delta \tau _{\text {LSB}}^{\text {Eucl}}<0.8\times 10^{-4}\) (ns) and to time advancement as \(\Delta \tau _{\text {LSB}}^{\text {adv}}<-4.5\times 10^{-13}\) (ns), both estimates based on the bound on \(\ell \) corresponding to the Cassini spacecraft experiment. We shall also briefly touch upon the feasibility of direct experimental detection of the advancement effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Notes

  1. For instance, the distance to Moon as measured by the Lunar Laser Ranging (LLR) technique could appear to us on Earth to be shorter by 22.09 cm than the Euclidean distance of the zeroth order. It is a realizable physical prediction (see Sect. 6).

  2. When \(\ell = 0\), the cubic Kerr terms in T(r) here differ from those of Wang and Lin [12]. However, their conclusion that the third-order mass effect is larger than the rotation effect for certain ranges of impact parameter is correct.

  3. When \(\ell \ne 0\), the third-order term involving \(a^{2}\), i.e., \(a^{2}R_{\text {S}}\) is not to be considered at all since the Ding et al. [58] metric (1316) is valid only up to first order in spin a [61]. However, the expressions for \(t(r_{0}\rightarrow r)\) are valid for all order in a only when \(\ell = 0\) (Kerr metric of general relativity).

References

  1. I.I. Shapiro, Fourth test of general relativity. Phys. Rev. Lett. 13, 789 (1964)

    Article  ADS  Google Scholar 

  2. I.I. Shapiro et al., Fourth test of general relativity: new radar result. Phys. Rev. Lett. 26, 1132 (1971)

    Article  ADS  Google Scholar 

  3. A. Bhadra, K.K. Nandi, Gravitational time advancement and its possible detection. Gen. Relat. Gravit. 42, 293 (2010)

    Article  ADS  MATH  Google Scholar 

  4. X.-M. Deng, Y. Xie, Gravitational time advancement under gravity’s rainbow. Phys. Lett. B 772, 152 (2017)

    Article  ADS  MATH  Google Scholar 

  5. X.-M. Deng, Effects of a brane world on gravitational time advancement. Mod. Phys. Lett. A 33, 1850110 (2018)

    Article  ADS  Google Scholar 

  6. S. Ghosh, A. Bhadra, Influences of dark energy and dark matter on gravitational time advancement. Eur. Phys. J. C 75, 494 (2015)

    Article  ADS  Google Scholar 

  7. S. Ghosh, A. Bhadra, A. Mukhopadhyay, Probing dark matter and dark energy through gravitational time advancement. Gen. Relativ. Gravit. 51, 54 (2019)

    Article  ADS  MATH  Google Scholar 

  8. G. Farrugia, S.L. Said, L. Ruggiero, Solar System tests in \(f(T)\) gravity. Phys. Rev. D 93, 104034 (2016)

    Article  ADS  Google Scholar 

  9. S. Carlip, A short comment on the Jupiter time-delay controversies. Int. J. Mod. Phys. D 15, 291 (2006)

    Article  ADS  MATH  Google Scholar 

  10. K.D. Krori, On motions of test-particles in Kerr metric. Indian J. Phys. 44, 227 (1970)

    Google Scholar 

  11. K.D. Krori, M. Barua, Astronomical tests in a Kerr field. Astrophys. Space Sci. 123, 21 (1986)

    Article  ADS  Google Scholar 

  12. K. Wang, W. Lin, A third-order approximation for time delay of light propagation in the equatorial plane of Kerr black hole. Gen. Relativ. Gravit. 46, 1740 (2014)

    Article  ADS  MATH  Google Scholar 

  13. V.A. Kostelecký, Gravity, Lorentz violation, and the standard model. Phys. Rev. D 69, 105009 (2004)

    Article  ADS  Google Scholar 

  14. S.J. Prokhovnik, The Logic of Special Relativity, Cambridge University Press, Cambridge (1958), Reprinted (C.U.P, London, 1967)

  15. S.J. Prokhovnik, Light in Einstein’s Universe (D. Reidel Publishing, Dordrecht, 1985)

    Book  MATH  Google Scholar 

  16. F.R. Tangherlini, An introduction to the general theory of relativity. Suppl. Nuovo Cimento 20, 1 (1961)

    ADS  MATH  Google Scholar 

  17. F.R. Tangherlini, Galilean-like transformation allowed by general covariance and consistent with special relativity. J. Mod. Phys. 5, 230 (2014). (and references therein)

    Article  Google Scholar 

  18. T. Sjödin, Synchronization in special relativity and related theories. Nuovo Cimento B 51, 229 (1979)

    Article  ADS  Google Scholar 

  19. S.K. Ghosal, K.K. Nandi, P. Chakraborty, Passage from Einsteinian to Galilean relativity and clock synchrony. Z. Naturforsch. 46a, 256 (1991)

    Article  ADS  MATH  Google Scholar 

  20. A. Bhadra, A. Chakraborty, S. Ghose, B. Raychaudhuri: AVS synchronization gauge field and standing waves. arXiv:2111.12285 [physics.class-ph] (2021)

  21. V.A. Kostelecký, S. Samuel, Spontaneous breaking of Lorentz symmetry in string theory. Phys. Rev. D 39, 683 (1989)

    Article  ADS  Google Scholar 

  22. V.A. Kostelecký, S. Samuel, Phenomenological gravitational constraints on strings and higher-dimensional theories. Phys. Rev. Lett. 63, 224 (1989)

    Article  ADS  Google Scholar 

  23. V.A. Kostelecký, S. Samuel, Gravitational phenomenology in higher-dimensional theories and strings. Phys. Rev. D 40, 1886 (1989)

    Article  ADS  Google Scholar 

  24. D. Colladay, V.A. Kostelecký, \(\rm CPT \) violation and the standard model. Phys. Rev. D 55, 6760 (1997)

    Article  ADS  Google Scholar 

  25. S.M. Carroll et al., Noncommutative Field Theory and Lorentz Violation. Phys. Rev. Lett. 87, 141601 (2001)

    Article  ADS  Google Scholar 

  26. R. Gambini, J. Pullin, Nonstandard optics from quantum space-time. Phys. Rev. D 59, 124021 (1999)

    Article  ADS  Google Scholar 

  27. J. Ellis, N.E. Mavromatos, D.V. Nanopoulos, Quantum-gravitational diffusion and stochastic fluctuations in the velocity of light. Gen. Relativ. Gravit. 32, 127 (2000)

    Article  ADS  MATH  Google Scholar 

  28. W.-M. Dai, Z.-K. Guo, R.-G. Cai, Y.-Z. Zhang, Lorentz invariance violation in the neutrino sector: a joint analysis from big bang nucleosynthesis and the cosmic microwave background. Eur. Phys. J. C 77, 386 (2017)

    Article  ADS  Google Scholar 

  29. G. Rubtsov, P. Satunin, S. Sibiryakov, Constraints on violation of Lorentz invariance from atmospheric showers initiated by multi-TeV photons. J. Cosmol. Astropart. Phys. 05(2017), 049 (2017)

    Article  ADS  Google Scholar 

  30. K. Bakke, H. Belich, On the Lorentz symmetry breaking effects on a Dirac neutral particle inside a two-dimensional quantum ring. Eur. Phys. J. Plus 129, 147 (2014)

    Article  Google Scholar 

  31. V.A. Kostelecký, C.D. Lane, Nonrelativistic quantum Hamiltonian for Lorentz violation. J. Math. Phys. 40, 6245 (1999)

    Article  ADS  MATH  Google Scholar 

  32. T.J. Yoder, G.S. Adkins, Higher order corrections to the hydrogen spectrum from the standard-model extension. Phys. Rev. D 86, 116005 (2012)

    Article  ADS  Google Scholar 

  33. R. Lehnert, Threshold analyses and Lorentz violation. Phys. Rev. D 68, 085003 (2003)

    Article  ADS  Google Scholar 

  34. O.G. Kharlanov, V.C. Zhukovsky, CPT and Lorentz violation effects in hydrogenlike atoms. J. Math. Phys. 48, 092302 (2007)

    Article  ADS  MATH  Google Scholar 

  35. V.A. Kostelecký, M. Mewes, Cosmological constraints on Lorentz violation in electrodynamic. Phys. Rev. Lett. 87, 251304 (2001)

    Article  ADS  Google Scholar 

  36. V.A. Kostelecký, M. Mewes, Signals for Lorentz violation in electrodynamics. Phys. Rev. D 66, 056005 (2002)

    Article  ADS  Google Scholar 

  37. V.A. Kostelecký, M. Mewes, Sensitive polarimetric search for relativity violations in gamma-ray bursts. Phys. Rev. Lett. 97, 140401 (2006)

    Article  ADS  Google Scholar 

  38. S.M. Carroll, G.B. Field, R. Jackiw, Limits on a Lorentz- and parity-violating modification of electrodynamics. Phys. Rev. D 41, 1231 (1990)

    Article  ADS  Google Scholar 

  39. C. Adam, F.R. Klinkhamer, Causality and CPT violation from an Abelian Chern-Simons-like term. Nucl. Phys. B 607, 247 (2001)

    Article  ADS  MATH  Google Scholar 

  40. W.F. Chen, G. Kunstatter, Constraint from the Lamb shift and anomalous magnetic moment on radiatively induced Lorentz and \(\rm CPT \) violation in quantum electrodynamics. Phys. Rev. D 62, 105029 (2000)

    Article  ADS  Google Scholar 

  41. C.D. Carone, M. Sher, M. Vanderhaeghen, New bounds on isotropic Lorentz violation. Phys. Rev. D 74, 077901 (2006)

    Article  ADS  Google Scholar 

  42. F.R. Klinkhamer, M. Schreck, Consistency of isotropic modified Maxwell theory: microcausality and unitarity. Nucl. Phys. B 848, 90 (2011)

    Article  ADS  MATH  Google Scholar 

  43. M. Schreck, Analysis of the consistency of parity-odd nonbirefringent modified Maxwell theory. Phys. Rev. D 86, 065038 (2012)

    Article  ADS  Google Scholar 

  44. M.A. Hohensee, R. Lehnert, D.F. Phillips, R.L. Walsworth, Limits on isotropic Lorentz violation in QED from collider physics. Phys. Rev. D 80, 036010 (2009)

    Article  ADS  Google Scholar 

  45. B. Altschul, V.A. Kostelecký, Spontaneous Lorentz violation and nonpolynomial interactions. Phys. Lett. B 628, 106 (2005)

    Article  ADS  Google Scholar 

  46. D. Colladay, P. McDonald, One-loop renormalization of the electroweak sector with Lorentz violation. Phys. Rev. D 79, 125019 (2009)

    Article  ADS  Google Scholar 

  47. V.E. Mouchrek-Santos, M.M. Ferreira Jr., Constraining \(CPT\)-odd nonminimal interactions in the electroweak sector. Phys. Rev. D 95, 071701(R) (2017)

    Article  ADS  Google Scholar 

  48. V.M. Abazov et al., (The D0 collaboration): search for violation of Lorentz invariance in top quark pair production and decay. Phys. Rev. Lett. 108, 261603 (2012)

    Article  ADS  Google Scholar 

  49. M.S. Berger, V.A. Kostelecký, Z. Liu, Lorentz and \(CPT\) violation in top-quark production and decay. Phys. Rev. D 93, 036005 (2016)

    Article  ADS  Google Scholar 

  50. R. Bluhm, V.A. Kostelecký, Spontaneous Lorentz violation, Nambu-Goldstone modes, and gravity. Phys. Rev. D 71, 065008 (2005)

    Article  ADS  Google Scholar 

  51. R.V. Maluf, V. Santos, W.T. Cruz, C.A.S. Almeida, Matter-gravity scattering in the presence of spontaneous Lorentz violation. Phys. Rev. D 88, 025005 (2013)

    Article  ADS  Google Scholar 

  52. R.V. Maluf, C.A.S. Almeida, R. Casana, M.M. Ferreira Jr., Einstein-Hilbert graviton modes modified by the Lorentz-violating bumblebee field. Phys. Rev. D 90, 025007 (2014)

    Article  ADS  Google Scholar 

  53. Q.G. Bailey, V.A. Kostelecký, Signals for Lorentz violation in post-Newtonian gravity. Phys. Rev. D 74, 045001 (2006)

    Article  ADS  Google Scholar 

  54. V.A. Kostelecký, A.C. Melissinos, M. Mewes, Searching for photon-sector Lorentz violation using gravitational-wave detectors. Phys. Lett. B 761, 1 (2016)

    Article  ADS  Google Scholar 

  55. V.A. Kostelecký, M. Mewes, Testing local Lorentz invariance with gravitational waves. Phys. Lett. B 757, 510 (2016)

    Article  ADS  MATH  Google Scholar 

  56. W.D.R. Jesus, A.F. Santos, Mod. Phys. Lett. A 34, 1950171 (2019)

    Article  ADS  Google Scholar 

  57. R. Casana, A. Cavalcante, F.P. Poulis, E.B. Santos, Exact Schwarzschild-like solution in a bumblebee gravity model. Phys. Rev. D 97, 104001 (2017)

    Article  ADS  Google Scholar 

  58. C. Ding, C. Lui, R. Casana, A. Cavalcante, Exact Kerr-like solution and its shadow in a gravity model with spontaneous Lorentz symmetry breaking. Eur. Phys. J. C 80, 178 (2020)

    Article  ADS  Google Scholar 

  59. S.K. Jha, A. Rahaman, Bumblebee gravity with a Kerr-Sen like solution and its Shadow. Eur. Phys. J. C 81, 345 (2021)

    Article  ADS  Google Scholar 

  60. V.A. Kostelecký, R. Potting, Gravity from local Lorentz violation. Gen. Relativ. Gravit. 37, 1675 (2005)

    Article  ADS  MATH  Google Scholar 

  61. R.V. Maluf, C.R. Muniz, Comment on “Greybody radiation and quasinormal modes of Kerr-like black hole in Bumblebee gravity model’’. Eur. Phys. J. C 82, 94 (2022)

    Article  ADS  Google Scholar 

  62. S. Kanzi, İ Sakallı, Reply to “Comment on ‘Greybody radiation and quasinormal modes of Kerr-like black hole in Bumblebee gravity model’’’. Eur. Phys. J. C 82, 93 (2022)

    Article  ADS  Google Scholar 

  63. C. Ding, X. Chen, Slowly rotating Einstein-bumblebee black hole solution and its greybody factor in a Lorentz violation model. Chin. Phys. C 45, 025106 (2021)

    Article  ADS  Google Scholar 

  64. R.N. Izmailov, K.K. Nandi, Novel features of Schwarzschild-like black hole of Lorentz violating bumblebee gravity. Class. Quant. Gravit. 39, 215006 (2022)

    Article  ADS  MATH  Google Scholar 

  65. B. Bertotti, L. Iess, P. Tortora, A test of general relativity using radio links with the Cassini spacecraft. Nature 425, 374 (2003)

    Article  ADS  Google Scholar 

  66. T. O’Brian, S. Diddams, What is the Fastest Event (Shortest Time Duration) that can be Measured with Today’s Technology and how is this Done? (Scientific American, 2004)

  67. J.B.R. Battat et al., The Apache point observatory lunar laser-ranging operation (APOLLO): two years of millimeter-precision measurements of the earth-moon range. Publ. Astron. Soc. Pacific 121, 29 (2009)

    Article  ADS  Google Scholar 

  68. J. Müller et al., Lunar Laser Ranging: a tool for general relativity, lunar geophysics and Earth science. J. Geod. 93, 2195 (2019)

    Article  ADS  Google Scholar 

  69. E. Mazarico et al., First two-way laser ranging to a lunar orbiter: infrared observations from the Grasse station to LRO’s retro-reflector array. Earth Planets Space 72, 113 (2020)

    Article  ADS  Google Scholar 

  70. V. Viswanathan et al., The new lunar ephemeris INPOP17a and its application to fundamental physics. Mon. Not. R. Astron. Soc. 476, 1877 (2018)

    Article  ADS  Google Scholar 

  71. P.B. Demorest, T. Pennucci, S.M. Ransom, M.S.E. Roberts, J.W.T. Hessels, A two-solar-mass neutron star measured using Shapiro delay. Nature 467, 1081 (2010)

    Article  ADS  Google Scholar 

  72. M. Kramer, Precision tests of theories of gravity using pulsars. Int. J. Mod. Phys. D 23, 1430004 (2014)

    Article  ADS  Google Scholar 

  73. L.H. Ford, A. Vilenkin, A gravitational analogue of the Aharonov-Bohm effect. Phys. A: Math. Gen. 14, 2353 (1981)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank an anonymous referee for many insightful comments that led to a considerable improvement of the paper. We are indebted to Gulnaz Kutlieva for her enlightening comments on different technical aspects of satellite communications relevant to the measurement of the time advancement effect. This research was funded by grant RB NOC-GMU-2022 (Prikaz No 2987 ot 29.11.2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. N. Izmailov.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Appendix 1: Bumblebee corrections

Appendix 1: Bumblebee corrections

Our idea is to separate pure Bumblebee corrections from the mass effects, so we put \(M=0\) in the metric (19), and for simplicity consider the static case (\(a=0\)), which yields a conical space-time

$$\begin{aligned} \textrm{d}\tau ^{2} = -\textrm{d}t^{2} + \left( 1 + \ell \right) \textrm{d}r^{2} + r^{2}\left( \textrm{d}\theta ^{2} + \sin ^{2}\theta \textrm{d}\phi ^{2}\right) , \end{aligned}$$
(A1)

where \(0 \le \phi < 2\pi \). The Kretschmann scalar due to Bumblebee field is

$$\begin{aligned} R_{\mu \nu \alpha \beta } R^{\mu \nu \alpha \beta } = \frac{4\ell ^{2}}{r^{4}(\ell + 1)^{2}}. \end{aligned}$$
(A2)

Assuming the signal to travel on the equatorial plane \(\theta = \pi /2\), consider the 2-surface S:(R, \(\phi \)) and using the method of Ford and Vilenkin [73], the metric (A1) can be rewritten as a “flat space-time” metric

$$\begin{aligned} \textrm{d}\tau ^{2}=-\textrm{d}t^{2}+\textrm{d}R^{2}+R^{2}\textrm{d}\phi ^{\prime 2}, \end{aligned}$$
(A3)

where \(b = \frac{1}{\sqrt{1+\ell }}\), \(R=r\sqrt{1+\ell }\) and \(0\le \phi ^{\prime } < 2\pi b\). Therefore, the light ray moving tangentially along a straight line in the flat planar metric (A3) sweeps out an angle \(\Delta \phi ^{\prime }= \pi \) or

$$\begin{aligned} \Delta \phi =\pi b^{-1}. \end{aligned}$$
(A4)

Hence, the light ray undergoes a deflection of

$$\begin{aligned} \delta \phi =\pi b^{-1}-\pi =\pi \left( b^{-1}-1\right) =\pi \left( \sqrt{1+\ell }-1\right) \simeq \frac{\pi \ell }{2}. \end{aligned}$$
(A5)

Note that, this is precisely the amount of correction to light bending by the LSB term, \(\delta \phi _{{\textrm{LSB}}}\), obtained after elaborate calculations in [57].

Similarly, the time delay in the “flat space-time” (A3) is

$$\begin{aligned} \Delta t=\int \frac{R\textrm{d}R}{\sqrt{R^{2}-R_{0}^{2}}} = \sqrt{R^{2}-R_{0}^{2}}, \end{aligned}$$
(A6)

where \(R_{0}\) is the closest approach distance of the light ray or radar signal from the origin. Using \(R=r\sqrt{1+\ell }\) and \(R_{0}= r_{0}\sqrt{1+\ell }\), we find the Euclidean part of time delay for two-way motion to be

$$\begin{aligned} \Delta \tau _{0}=2\Delta t=2\left( \sqrt{1+\ell }\right) \left( \sqrt{r^{2}-r_{0}^{2}}\right) =\delta \tau _{0}+\delta \tau _{{\textrm{LSB}}}^{{\textrm{Eucl}}}. \end{aligned}$$
(A7)

This is precisely Eq. (52), which is what we wanted to show. The correction to the Euclidean part of time delay for two-way motion in the original (tr) coordinates, restoring c, then is

$$\begin{aligned} \delta \tau _{{\textrm{LSB}}}^{{\textrm{Euc}}}\simeq \frac{\ell }{c}\sqrt{r_{A}^{2}-r_{B}^{2}}, \end{aligned}$$
(A8)

confirming the LSB correction obtained after elaborate calculations in [57].

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tuleganova, G.Y., Karimov, R.K., Izmailov, R.N. et al. Gravitational time advancement effect in Bumblebee gravity for Earth bound systems. Eur. Phys. J. Plus 138, 94 (2023). https://doi.org/10.1140/epjp/s13360-023-03713-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03713-y

Navigation