Skip to main content
Log in

Artificial neural networking estimation of skin friction coefficient at cylindrical surface: a Casson flow field

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this article, we constructed Artificial Neural Networking (ANN) models to predict values of the skin friction coefficient for two different flow regimes of non-Newtonian fluid. More specifically, flow of Casson fluid is considered toward an inclined surface with stagnation point and mixed convection effects. Energy equation is considered by means of thermal radiations, viscous dissipation, heat generation and temperature-dependent variable viscosity effects. The flow regime is carried as a two various models namely Model-I: Casson fluid flow in the presence of magnetic field and Model-II: Casson fluid flow in the absence of magnetic field. Mathematical formulation is presented for each model, and shooting method is used to obtain the numerical data of skin friction coefficient. In contrast to the Casson fluid, mixed convection, and velocities ratio parameters, the skin friction coefficient exhibits a direct relationship with the magnetic field parameter and the curvature parameter. The MoD values for both models (I, II) show that there is relatively little variation between targeted and the projected values produced from the constructed ANN models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. R.K. Dash, K.N. Mehta, G. Jayaraman, Casson fluid flow in a pipe filled with a homogeneous porous medium. Int. J. Eng. Sci. 34(10), 1145–1156 (1996)

    Article  MATH  Google Scholar 

  2. R.K. Dash, K.N. Mehta, G. Jayaraman, Effect of yield stress on the flow of a Casson fluid in a homogeneous porous medium bounded by a circular tube. Appl. Sci. Res. 57(2), 133–149 (1996)

    Article  MATH  Google Scholar 

  3. E.A. Kirsanov, S.V. Remizov, Application of the Casson model to thixotropic waxy crude oil. Rheol. Acta 38(2), 172–176 (1999)

    Article  Google Scholar 

  4. R.K. Dash, G. Jayaraman, K.N. Mehta, Shear augmented dispersion of a solute in a Casson fluid flowing in a conduit. Ann. Biomed. Eng. 28(4), 373–385 (2000)

    Article  Google Scholar 

  5. W. Eckart, Phenomenological modeling of electrorheological fluids with an extended Casson-model. Continuum Mech. Thermodyn. 12(5), 341–362 (2000)

    Article  ADS  MATH  Google Scholar 

  6. K. Rohlf, G. Tenti, The role of the Womersley number in pulsatile blood flow: a theoretical study of the Casson model. J. Biomech. 34(1), 141–148 (2001)

    Article  Google Scholar 

  7. D.D. Joye, Shear rate and viscosity corrections for a Casson fluid in cylindrical (Couette) geometries. J. Colloid Interface Sci. 267(1), 204–210 (2003)

    Article  ADS  Google Scholar 

  8. A. Khalid, I. Khan, A. Khan, S. Shafie, Unsteady MHD free convection flow of Casson fluid past over an oscillating vertical plate embedded in a porous medium. Eng. Sci. Technol. Int. J. 18(3), 309–317 (2015)

    Google Scholar 

  9. P.B.A. Reddy, Magnetohydrodynamic flow of a Casson fluid over an exponentially inclined permeable stretching surface with thermal radiation and chemical reaction. Ain Shams Eng. J. 7(2), 593–602 (2016)

    Article  Google Scholar 

  10. M.I. Khan, M. Waqas, T. Hayat, A. Alsaedi, A comparative study of Casson fluid with homogeneous-heterogeneous reactions. J. Colloid Interface Sci. 498, 85–90 (2017)

    Article  ADS  Google Scholar 

  11. G.J. Reddy, B. Kethireddy, M. Kumar, M.M. Hoque, A molecular dynamics study on transient non-Newtonian MHD Casson fluid flow dispersion over a radiative vertical cylinder with entropy heat generation. J. Mol. Liq. 252, 245–262 (2018)

    Article  Google Scholar 

  12. S.S. Ghadikolaei, D.D.G. Kh Hosseinzadeh, B. Jafari, Nonlinear thermal radiation effect on magneto Casson nanofluid flow with Joule heating effect over an inclined porous stretching sheet. Case Stud. Therm. Eng. 12, 176–187 (2018)

    Article  Google Scholar 

  13. Z. Shah, A. Dawar, I. Khan, S. Islam, D.L.C. Ching, A.Z. Khan, Cattaneo-Christov model for electrical magnetite micropoler Casson ferrofluid over a stretching/shrinking sheet using effective thermal conductivity model. Case Stud. Therm. Eng. 13, 100352 (2019)

    Article  Google Scholar 

  14. M. Amjad, I. Zehra, S. Nadeem, N. Abbas, A. Saleem, A. Issakhov, Influence of Lorentz force and induced magnetic field effects on Casson micropolar nanofluid flow over a permeable curved stretching/shrinking surface under the stagnation region. Surf. Interfaces 21, 100766 (2020)

    Article  Google Scholar 

  15. M. Awais, M.A.Z. Raja, S.E. Awan, M. Shoaib, H.M. Ali, Heat and mass transfer phenomenon for the dynamics of Casson fluid through porous medium over shrinking wall subject to Lorentz force and heat source/sink. Alexandria Eng. J. 60(1), 1355–1363 (2021)

    Article  Google Scholar 

  16. A.T. Akinshilo, F. Mabood, A.O. Ilegbusi, Heat generation and nonlinear radiation effects on MHD Casson nanofluids over a thin needle embedded in porous medium. Int. Commun. Heat Mass Transfer 127, 105547 (2021)

    Article  Google Scholar 

  17. M. Sohail, Y.-M. Chu, E.R. El-Zahar, U. Nazir, T. Naseem, Contribution of joule heating and viscous dissipation on three dimensional flow of Casson model comprising temperature dependent conductance utilizing shooting method. Phys. Scr. 96(8), 085208 (2021)

    Article  ADS  Google Scholar 

  18. N.A. Sheikh, D.L.C. Ching, T. Abdeljawad, I. Khan, M. Jamil, K.S. Nisar, A fractal-fractional model for the MHD flow of Casson fluid in a channel. Comput. Mater. Continua 67(2), 1385–1398 (2021)

    Article  Google Scholar 

  19. B.B. Divya, G. Manjunatha, C. Rajashekhar, H. Vaidya, K.V. Prasad, Analysis of temperature dependent properties of a peristaltic MHD flow in a non-uniform channel: a Casson fluid model. Ain Shams Eng. J. 12(2), 2181–2191 (2021)

    Article  Google Scholar 

  20. W. Jamshed, E.K. Akgül, K.S. Nisar, Keller box study for inclined magnetically driven Casson nanofluid over a stretching sheet: single phase model. Phys. Scr. 96(6), 065201 (2021)

    Article  ADS  Google Scholar 

  21. M. Arif, P. Kumam, W. Kumam, I. Khan, M. Ramzan, A fractional model of Casson fluid with ramped wall temperature: engineering applications of engine oil. Comput. Math. Methods 3(6), e1162 (2021)

    Article  Google Scholar 

  22. V. Puneeth, S. Manjunatha, J.K. Madhukesh, G.K. Ramesh, Three dimensional mixed convection flow of hybrid casson nanofluid past a non-linear stretching surface: a modified Buongiorno’s model aspects. Chaos Solitons Fractals 152, 111428 (2021)

    Article  MATH  Google Scholar 

  23. A. Raza, S.U. Khan, K. Al-Khaled, M.I. Khan, A.U. Haq, F. Alotaibi, A.M. Abd Allah, S. Qayyum, A fractional model for the kerosene oil and water-based Casson nanofluid with inclined magnetic force. Chem. Phys. Lett. 787, 139277 (2022)

    Article  Google Scholar 

  24. M.M. Khader, M.M. Babatin, A.M. Megahed, Numerical study of thermal radiation phenomenon and its influence on amelioration of the heat transfer mechanism through MHD non-newtonian casson model. Coatings 12(2), 208 (2022)

    Article  Google Scholar 

  25. W. Jamshed, V. Kumar, V. Kumar, Computational examination of Casson nanofluid due to a non-linear stretching sheet subjected to particle shape factor: Tiwari and Das model. Numer. Methods Partial Differ. Equ. 38(4), 848–875 (2022)

    Article  Google Scholar 

  26. E. Ahmadloo, S. Azizi, Prediction of thermal conductivity of various nanofluids using artificial neural network. Int. Commun. Heat Mass Transf. 74, 69–75 (2016)

    Article  Google Scholar 

  27. A. Ali, A. Abdulrahman, S. Garg, K. Maqsood, G. Murshid, Application of artificial neural networks (ANN) for vapor-liquid-solid equilibrium prediction for CH4-CO2 binary mixture. Greenhouse Gases 9, 67–78 (2019)

    Article  Google Scholar 

  28. A. Akhgar, D. Toghraie, N. Sina, M. Afrand, Developing dissimilar artificial neural networks (ANNs) to prediction the thermal conductivity of MWCNT-TiO2/Water-ethylene glycol hybrid nanofluid. Powder Technol. 355, 602–610 (2019)

    Article  Google Scholar 

  29. F. Esmaeilzadeh, A.S. Teja, A. Bakhtyari, The thermal conductivity, viscosity, and cloud points of bentonite nanofluids with n-pentadecane as the base fluid. J. Mol. Liq. 300, 112307 (2020)

    Article  Google Scholar 

  30. A.B. Çolak, O. Yıldız, M. Bayrak, B.S. Tezekici, Experimental study for predicting the specific heat of water based Cu-Al2O3 hybrid nanofluid using artificial neural network and proposing new correlation. Int. J. Energy Res. 44(9), 7198–7215 (2020)

    Article  Google Scholar 

  31. A.B. Çolak, An experimental study on the comparative analysis of the effect of the number of data on the error rates of artificial neural networks. Int. J. Energy Res. 45(1), 478–500 (2021)

    Article  Google Scholar 

  32. S. Öcal, M. Gökçek, A.B. Çolak, M. Korkanç, A comprehensive and comparative experimental analysis on thermal conductivity of TiO2-CaCO3/Water hybrid nanofluid: proposing new correlation and artificial neural network optimization. Heat Transf. Res. 52(17), 55–79 (2021)

    Article  Google Scholar 

  33. A.B. Çolak, T. Güzel, O. Yıldız, M. Özer, An experimental study on determination of the shottky diode current-voltage characteristic depending on temperature with artificial neural network. Phys. B 608, 412852 (2021)

    Article  Google Scholar 

  34. Y. Cao, E. Kamrani, S. Mirzaei, A. Khandakar, B. Vaferi, Electrical efficiency of the photovoltaic/thermal collectors cooled by nanofluids: machine learning simulation and optimization by evolutionary algorithm. Energy Rep. 8, 24–36 (2022)

    Article  Google Scholar 

  35. A.B. Çolak, Y. Karakoyun, O. Açıkgöz, Z. Yumurtacı, A.S. Dalkılıç, A numerical study aimed at finding optimal artificial neural network model covering experimentally obtained heat transfer characteristics of hydronic underfloor radiant heating systems running various nanofluids. Heat Transf. Res. 53(5), 51–71 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prince Sultan University for their support through the TAS research lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalil Ur Rehman.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehman, K.U., Shatanawi, W. & Çolak, A.B. Artificial neural networking estimation of skin friction coefficient at cylindrical surface: a Casson flow field. Eur. Phys. J. Plus 138, 69 (2023). https://doi.org/10.1140/epjp/s13360-023-03704-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-023-03704-z

Navigation