Skip to main content
Log in

The generalized Schottky model of thermionic emission in complex metal with nonextensive quantum statistics

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, by use of the new version of nonextensive quantum statistics, established on basis of a technique called parameter transformation, we study the thermionic emission phenomenon in the complex metals, which contains long rang interactions or correlations. Employing the free electron model, one can obtain the analytical expression of the emission current density with zero field. It is interesting that, due to the Tsallis correction related to the parameter ν, the emission current density with zero field exhibits complicated dependence on temperature. By generalizing the Schottky effect/model, the thermionic emission expression with external field is also obtained. The numerical analysis shows that the emission current with external field is increasing sensitively with the nonextensive parameter ν. These results obtained in the present work might be suitable in metal materials research such as the metal containing impurities, the one whose electron density is much larger, the transition metal, the system with heavy Fermion and the one whose lattice oscillation contains non-nearest interactions due to some pressure from outside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability Statements

The data that support the findings of this study are openly available in The European Physical Journal Plus.

References

  1. C. Tsallis, J. Stat. Phys. 52, 479 (1988)

    Article  ADS  Google Scholar 

  2. J.L. Du, Europhys. Lett. 67, 893 (2004)

    Article  Google Scholar 

  3. M.P. Leubner, Astrophys. J. 632, L1 (2005)

    Article  ADS  Google Scholar 

  4. J.L. Du, New Astron. 12, 60 (2006)

    Article  ADS  Google Scholar 

  5. J.L. Du, Astrophys. Space Sci. 312, 47 (2007)

    Article  Google Scholar 

  6. J.A.S. Lima, R. Silva Jr., J. Santos, Phys. Rev. E 61, 3260 (2000)

    Article  ADS  Google Scholar 

  7. J.L. Du, Phys. Lett. A 329, 262 (2004)

    Article  ADS  Google Scholar 

  8. L.Y. Liu, J.L. Du, Physica A 387, 4821 (2008)

    Article  ADS  Google Scholar 

  9. H.N. Yu, J.L. Du, Ann. Phys. 350, 302 (2014)

    Article  ADS  Google Scholar 

  10. B. Liu, J. Goree, Phys. Rev. Lett. 100, 055003 (2008)

    Article  ADS  Google Scholar 

  11. B. Liu, J. Goree, Y. Feng, Phys. Rev. E 78, 046403 (2008)

    Article  ADS  Google Scholar 

  12. T. Oikonomou, A. Provata, U. Tirnakli, Physica A 387, 2653 (2008)

    Article  ADS  Google Scholar 

  13. O.J. Rolinski, A. Martin, D.J.S. Birch, Ann. N. Y. Acad. Sci. 1130, 314 (2008)

    Article  ADS  Google Scholar 

  14. K. Eftaxias, G. Minadakis, S.M. Potirakis, G. Balasis, Physica A 392, 497 (2013)

    Article  ADS  Google Scholar 

  15. F. Büyükiliç, D. Demirhan, A. Güleç, Phys. Lett. A 197(3), 209–220 (1995)

    Article  ADS  Google Scholar 

  16. A.K. Rajagopal, R.S. Mendes, E.K. Lenzi, Phys. Rev. Lett. 80(18), 3907 (1998)

    Article  ADS  Google Scholar 

  17. P. Ma, Y. Zheng, G. Qi, The European Physical Journal Plus 134(10), 502 (2019)

    Article  ADS  Google Scholar 

  18. Y. Zheng, The European Physical Journal Plus 136(7), 1–14 (2021)

    Article  ADS  Google Scholar 

  19. Y. Zheng, J. Du, F. Liang, Continuum Mech. Thermodyn. 30(3), 629–639 (2018)

    Article  ADS  Google Scholar 

  20. Y. Zheng, J. Du, J. Continuum Mech. Thermodyn. 28, 1791 (2016)

    Article  ADS  Google Scholar 

  21. Zhicheng Wang, Thermodynamics and Statistical Physics, Forth Edition, Higher Education Press. (in Chinese)

  22. Y. Zheng, Europhys. Lett. 101(2), 29002 (2013)

    Article  ADS  Google Scholar 

  23. A. Grillo, M. Passacantando, A. Zak et al., Small 16(35), 2002880 (2020)

    Article  Google Scholar 

  24. A. Di Bartolomeo, A. Pelella, F. Urban et al., Advanced Electronic Materials 6(7), 2000094 (2020)

    Article  Google Scholar 

  25. A. Pelella, A. Grillo, F. Urban et al., Advanced Electronic Materials 7(2), 2000838 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 11405092.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yahui Zheng.

Appendix A

Appendix A

In order to prove (14), we need to calculate the following integral,

$$\iiint {a^{ - \beta (\varepsilon - \mu )} \text{d}p_{x} \text{d}p_{y} \text{d}p_{z} } = a^{\beta \mu } \iiint {a^{{ - \beta \frac{{p_{x}^{2} + p_{y}^{2} + p_{z}^{2} }}{2m}}} \text{d}p_{x} \text{d}p_{y} \text{d}p_{z} }.$$
(41)

Notice that the lower limit of the integral along x direction is χ. The integral of (41) in the pypz plane is

$$I = a^{\beta \mu } \left( {\frac{2m}{{\beta \ln a}}} \right)^{{\tfrac{3}{2}}} \sqrt \pi \int_{{x_{0} }}^{ + \infty } {e^{{ - x^{2} }} dx} ,$$
(42)

where

$$x_{0} = \sqrt {\beta \chi \ln a} ,\begin{array}{*{20}c} {} & {x^2 = \beta \frac{{p_{x}^{2} }}{2m}} \\ \end{array} \ln a.$$
(43)

Considering the variable substitution

$$x^{2} - x_{0}^{2} = t^{2} ,$$
(44)

with t > 0, one has

$$I = a^{\beta \mu } \left( {\frac{2m}{{\beta \ln a}}} \right)^{{\tfrac{3}{2}}} \sqrt \pi e^{{ - x_{0}^{2} }} \int_{0}^{ + \infty } {e^{{ - t^{2} }} \frac{t}{{\sqrt {x_{0}^{2} + t^{2} } }}dt} .$$
(45)

It is noticeable that the function

$$f(t) = e^{{ - t^{2} }} t,$$
(46)

has maximum at \(1/\sqrt 2\). The integral in (45) is mainly around this maximum. On the other hand, there is

$$x_{0}^{2} = \beta \chi \ln a \gg 1.$$
(47)

So (45) is changed into

$$\begin{gathered} I \approx a^{\beta \mu } \left( {\frac{2m}{{\beta \ln a}}} \right)^{{\tfrac{3}{2}}} \sqrt \pi e^{{ - x_{0}^{2} }} \int_{0}^{ + \infty } {e^{{ - t^{2} }} \frac{t}{{x_{0} }}dt} \hfill \\ = a^{\beta \mu } \left( {\frac{2m}{{\beta \ln a}}} \right)^{{\tfrac{3}{2}}} \sqrt \pi e^{{ - x_{0}^{2} }} \frac{1}{{2x_{0} }} = a^{\beta (\mu - \chi )} \left( {\frac{2m}{{\ln a}}} \right)^{{\tfrac{3}{2}}} \frac{\sqrt \pi }{{2\sqrt \chi }}\beta^{ - 2} . \hfill \\ \end{gathered}$$
(48)

Therefore,

$$\begin{gathered} - \frac{\partial }{\ln a\partial \beta }\ln \iiint {a^{ - (\varepsilon - \mu )/kT} \text{d}p_{x} \text{d}p_{y} \text{d}p_{z} } \hfill \\ = - \frac{\partial }{\ln a\partial \beta }\ln [e^{\beta (\mu - \chi )\ln a} \beta^{ - 2} ] \hfill \\ = W + \frac{2kT}{{\ln a}}. \hfill \\ \end{gathered}$$
(49)

Then, (14) is verified.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Y. The generalized Schottky model of thermionic emission in complex metal with nonextensive quantum statistics. Eur. Phys. J. Plus 138, 42 (2023). https://doi.org/10.1140/epjp/s13360-022-03644-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03644-0

Navigation