Skip to main content
Log in

Simulated image of the shadow of the Kerr–Newman–NUT–Kiselev black hole in the Rastall gravity with a thin accretion disk

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Here, we study the effect of strong gravitational field on the light rays emitted from the particles in the accretion disk in the vicinity of the Kerr–Newman–NUT–Kiselev (KNNK) black hole in the Rastall gravity (RG). In our analysis we consider the thin accretion disk model of Novikov and Thorne. We observe that the thermal flux of the accretion disk strongly depends on the intensity of the quintessence in the spacetime of the KNNK black hole in the RG, and the flux decreases for the increasing values of the quintessential intensity. We also notice that the smaller values of the equation of state parameter \(\omega _q\), for the quintessence, reduces the thermal flux for very small values of the Rastall parameter \(\kappa \lambda \). Further we use the numerical codes, namely, the GYOTO and TM (Temurbek Mirzaev) codes, using C++ and Python languages, to compare the shadow cast by the KNNK black hole in the RG. We see that both the codes give similar behavior of the shadow cast by the KNNK black hole in the RG. Interestingly, we observe that the left hand side of the apparent black hole environment with respect to the central black hole is much brighter than the right hand side. This is due to the Doppler effect, i.e. the frequency of photons coming towards the observer (and thus the observed flux energy) is always higher than those of moving away form the observer. We demonstrate that increase of the quintessential intensity increases the size of the shadow cast by the KNNK black hole in the RG, considerably when the parameter \(\kappa \lambda \) is very close to zero. We also see that the change in the size of the shadow of the KNNK black hole in the RG becomes negligible with the change in the quintessential intensity parameter \(\alpha \), when the parameter \(\omega _q\) is close to zero and it becomes considerable when the parameter \(\omega _q\) is smaller than zero. Next, we show that the position and shape of the shadow cast by the KNNK black hole in the RG strongly depends on the inclination angle of the incident light. We notice that the shadow of the KNNK black hole in the RG has more circular-like form for smaller values of the inclination angle. Further the shadow of the KNNK black hole in the RG shifts towards the right and becomes more deformed with the increasing values of the inclination angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data, or the data will not be deposited. (There are no observational data related to this article. The necessary calculations and graphic discussion can be made available on request).

References

  1. H. Falcke, F. Melia, E. Agol, Astrophys. J. 528, L13 (2000). https://doi.org/10.1086/312423

    Article  ADS  Google Scholar 

  2. K. Akiyama et al., Astrophys. J. Lett. (2019). https://doi.org/10.3847/2041-8213/ab0f43

    Article  Google Scholar 

  3. W.M. Farr, N. Sravan, A. Cantrell, L. Kreidberg, C.D. Bailyn, I. Mandel, V. Kalogera, Astrophys. J. 741, 103 (2011). https://doi.org/10.1088/0004-637X/741/2/103. arXiv:1011.1459 [astro-ph.GA]

  4. R. Takahashi, J. Korean Phys. Soc. 45, S1808 ( 2004). https://doi.org/10.1086/422403. arXiv:astro-ph/0405099

  5. M.A. Abramowicz, P.C. Fragile, Living Rev. Rel. 16, 1 (2013). https://doi.org/10.12942/lrr-2013-1. arXiv:1104.5499 [astro-ph.HE]

  6. N.I. Shakura, R.A. Sunyaev, Astron. Astrophys. 24, 337 (1973)

    ADS  Google Scholar 

  7. D.N. Page, K.S. Thorne, Astrophys. J. 191, 499 (1974). https://doi.org/10.1086/152990

    Article  ADS  Google Scholar 

  8. M. Milosavljević, V. Bromm, S.M. Couch, S.P. Oh, Astrophys. J. 698, 766 (2009). https://doi.org/10.1088/0004-637x/698/1/766

    Article  ADS  Google Scholar 

  9. M. Jamil, I. Hussain, Int. J. Theor. Phys. 50, 465 (2011). https://doi.org/10.1007/s10773-010-0553-5. arXiv:1101.1583 [astro-ph.CO]

  10. A. Jawad, M.U. Shahzad, Eur. Phys. J. C 76, 123 (2016). https://doi.org/10.1140/epjc/s10052-016-3967-2. arXiv:1602.05952 [gr-qc]

  11. A. Jawad, K. Jusufi, M.U. Shahzad, Phys. Rev. D 104, 084045 (2021). https://doi.org/10.1103/PhysRevD.104.084045

    Article  ADS  Google Scholar 

  12. I.D. Novikov, K.S. Thorne, in Les Houches Summer School of Theoretical Physics: Black Holes pp. 343–550 (1973)

  13. C.S.J. Pun, Z. Kovács, T. Harko, Phys. Rev. D 78, 024043 (2008). https://doi.org/10.1103/PhysRevD.78.024043

    Article  ADS  Google Scholar 

  14. D. Perez, G.E. Romero, S.E.P. Bergliaffa, Astron. Astrophys. 551, A4 (2013). https://doi.org/10.1051/0004-6361/201220378. arXiv:1212.2640 [astro-ph.CO]

    Article  Google Scholar 

  15. A.J. John, Mon. Not. R. Astron. Soc. 490, 3824 (2019). https://doi.org/10.1093/mnras/stz2889. arXiv:1603.09425 [gr-qc]

    Article  ADS  Google Scholar 

  16. A. Ditta, G. Abbas, Chin. J. Phys. 65, 325 (2020). https://doi.org/10.1016/j.cjph.2020.03.007

    Article  Google Scholar 

  17. A.M. Bauer, A. Cárdenas-Avenda, C.F. Gammie, N. Yunes (2022) Astrophys. J. 925, 119. https://doi.org/10.3847/1538-4357/ac3a03. arXiv:2111.02178 [gr-qc]

  18. C. Liu, S. Yang, Q. Wu, T. Zhu, J. Cosmol. Astropart. Phys. 2022, 034 (2022). https://doi.org/10.1088/1475-7516/2022/02/034

    Article  Google Scholar 

  19. Z. Kovacs, K.S. Cheng, T. Harko, Astron. Astrophys. 500, 621 (2009). https://doi.org/10.1051/0004-6361/200811412. arXiv:0903.4746 [astro-ph.HE]

    Article  ADS  Google Scholar 

  20. T. Harko, Z. Kovacs, F.S.N. Lobo, Phys. Rev. D 79, 064001 (2009). https://doi.org/10.1103/PhysRevD.79.064001. arXiv:0901.3926 [gr-qc]

    Article  ADS  Google Scholar 

  21. K.V. Staykov, D.D. Doneva, S.S. Yazadjiev, JCAP 08, 061 (2016). https://doi.org/10.1088/1475-7516/2016/08/061. arXiv:1606.01529 [gr-qc]

    Article  ADS  Google Scholar 

  22. S. Paul, R. Shaikh, P. Banerjee, T. Sarkar, JCAP 03, 055 (2020). https://doi.org/10.1088/1475-7516/2020/03/055. arXiv:1911.05525 [gr-qc]

    Article  ADS  Google Scholar 

  23. J.F. Hawley, L.L. Smarr, J.R. Wilson, (1983)

  24. D. Molteni, D. Ryu, S.K. Chakrabarti, Astrophys. J. 470, 460 (1996). https://doi.org/10.1086/177877. arXiv:astro-ph/9605116

    Article  ADS  Google Scholar 

  25. P. Amaro-Seoane, M. Freitag, R. Spurzem, Mon. Not. R. Astron. Soc. 352, 655 (2004). https://doi.org/10.1111/j.1365-2966.2004.07956.x. arXiv:astro-ph/0401163

    Article  ADS  Google Scholar 

  26. P.C. Fragile, P. Anninos, Astrophys. J. 623, 347 (2005). https://doi.org/10.1086/428433

    Article  ADS  Google Scholar 

  27. S. Koide, D.L. Meier, K. Shibata, T. Kudoh, Astrophys. J. 536, 668 (2000). https://doi.org/10.1086/308986. arXiv:astro-ph/9907435

    Article  ADS  Google Scholar 

  28. F.H. Vincent, T. Paumard, E. Gourgoulhon, G. Perrin, Class. Quant. Grav. 28, 225011 (2011). https://doi.org/10.1088/0264-9381/28/22/225011. arXiv:1109.4769 [gr-qc]

    Article  ADS  Google Scholar 

  29. D. Psaltis, T. Johannsen, Astrophys. J. 745, 1 (2012). https://doi.org/10.1088/0004-637X/745/1/1. arXiv:1011.4078 [astro-ph.HE]

  30. D. Ayzenberg, N. Yunes, Classical Quantum Gravity 35, 235002 (2018). https://doi.org/10.1088/1361-6382/aae87b. arXiv:1807.08422 [gr-qc]

  31. A.B. Abdikamalov, A.A. Abdujabbarov, D. Ayzenberg, D. Malafarina, C. Bambi, B. Ahmedov, Phys. Rev. D 100, 024014 (2019). https://doi.org/10.1103/PhysRevD.100.024014. arXiv:1904.06207 [gr-qc]

    Article  ADS  Google Scholar 

  32. B.S. Haridasu, V.V. Luković, R. D’Agostino, N. Vittorio, Astron. Astrophys. 600, L1 (2017). https://doi.org/10.1051/0004-6361/201730469. arXiv:1702.08244 [astro-ph.CO]

    Article  ADS  Google Scholar 

  33. V.V. Kiselev, Class. Quant. Grav. 20, 1187 (2003). https://doi.org/10.1088/0264-9381/20/6/310. arXiv:gr-qc/0210040

    Article  ADS  Google Scholar 

  34. B. Toshmatov, Z. Stuchlík, B. Ahmedov, Mod. Phys. Lett. A 32, 1775001 (2017). https://doi.org/10.1142/S0217732317750013. arXiv:1707.00403 [gr-qc]

    Article  ADS  Google Scholar 

  35. M.F.A.R. Sakti, A. Suroso, F.P. Zen, Eur. Phys. J. Plus 134, 580 (2019). https://doi.org/10.1140/epjp/i2019-12937-x. arXiv:1909.06595 [hep-th]

    Article  Google Scholar 

  36. N.U. Mollaand, U. Debnath, Int. J. Modern Phys. A 36, 2150210–168 (2021). https://doi.org/10.1142/S0217751X21502109

    Article  ADS  Google Scholar 

  37. M.F.A.R. Sakti, A. Suroso, F.P. Zen, Ann. Phys. 413, 168062 (2020). https://doi.org/10.1016/j.aop.2019.168062. arXiv:1901.09163 [gr-qc]

    Article  Google Scholar 

  38. P. Rastall, Phys. Rev. D 6, 3357 (1972). https://doi.org/10.1103/PhysRevD.6.3357

    Article  ADS  Google Scholar 

  39. M. Visser, Phys. Lett. B 782, 83 (2018). https://doi.org/10.1016/j.physletb.2018.05.028. arXiv:1711.11500 [gr-qc]

    Article  ADS  Google Scholar 

  40. F. Darabi, H. Moradpour, I. Licata, Y. Heydarzade, C. Corda, Eur. Phys. J. C 78, 25 (2018). https://doi.org/10.1140/epjc/s10052-017-5502-5. arXiv:1712.09307 [gr-qc]

    Article  ADS  Google Scholar 

  41. Y. Heydarzade, H. Moradpour, F. Darabi, Can. J. Phys. 95, 1253 (2017). https://doi.org/10.1139/cjp-2017-0254. arXiv:1610.03881 [gr-qc]

    Article  ADS  Google Scholar 

  42. R. Kumarand, S.G. Ghosh, Eur. Phys. J. C 78, 750 (2018). https://doi.org/10.1140/epjc/s10052-018-6206-1

    Article  ADS  Google Scholar 

  43. B. Narzilloev, I. Hussain, A. Abdujabbarov, B. Ahmedov, C. Bambi, Eur. Phys. J. Plus 136, 1032 (2021). https://doi.org/10.1140/epjp/s13360-021-02039-x. arXiv:2110.01772 [gr-qc]

    Article  Google Scholar 

  44. B. Narzilloev, D. Malafarina, A. Abdujabbarov, C. Bambi, Eur. Phys. J. C 80, 784 (2020). https://doi.org/10.1140/epjc/s10052-020-8370-3arXiv:2003.11828 [gr-qc]

    Article  ADS  Google Scholar 

  45. B. Narzilloev, J. Rayimbaev, A. Abdujabbarov, C. Bambi, Eur. Phys. J. C 80, 1074 (2020). https://doi.org/10.1140/epjc/s10052-020-08623-2. arXiv:2005.04752 [gr-qc]

    Article  ADS  Google Scholar 

  46. S. Shaymatov, B. Narzilloev, A. Abdujabbarov, C. Bambi, Phys. Rev. D 103, 124066 (2021). https://doi.org/10.1103/PhysRevD.103.124066

    Article  ADS  Google Scholar 

  47. B. Narzilloev, D. Malafarina, A. Abdujabbarov, B. Ahmedov, C. Bambi, Phys. Rev. D 104, 064016 (2021). https://doi.org/10.1103/PhysRevD.104.064016

    Article  ADS  Google Scholar 

  48. J. Rayimbaev, B. Narzilloev, A. Abdujabbarov, B. Ahmedov, Galaxies (2021). https://doi.org/10.3390/galaxies9040071

    Article  Google Scholar 

  49. B. Narzilloev, J. Rayimbaev, A. Abdujabbarov, B. Ahmedov, Galaxies (2021). https://doi.org/10.3390/galaxies9030063

    Article  Google Scholar 

  50. B. Narzilloev, S. Shaymatov, I. Hussain, A. Abdujabbarov, B. Ahmedov, C. Bambi, Eur. Phys. J. C 81, 849 (2021). https://doi.org/10.1140/epjc/s10052-021-09617-4. arXiv:2109.02816 [gr-qc]

    Article  ADS  Google Scholar 

  51. Z. Xu, Y. Liao, J. Wang, Int. J. Mod. Phys. A 34, 1950185 (2019). https://doi.org/10.1142/S0217751X19501859

    Article  ADS  Google Scholar 

  52. I. Banerjee, S. Chakraborty, S. SenGupta, Phys. Rev. D 100, 044045 (2019). https://doi.org/10.1103/PhysRevD.100.044045. arXiv:1905.08043 [gr-qc]

    Article  ADS  Google Scholar 

  53. S.X. Tianand, Z.H. Zhu, Phys. Rev. D 100, 064011 (2019). https://doi.org/10.1103/PhysRevD.100.064011

    Article  ADS  Google Scholar 

  54. C. Bambi, Black Holes: A Laboratory for Testing Strong Gravity (Springer, Singapore, 2017)

    Book  MATH  Google Scholar 

  55. K. Akiyama et al., Astrophys. J. 875, L1 (2019). https://doi.org/10.3847/2041-8213/ab0ec7. arXiv:1906.11238 [astro-ph.GA]

    Article  ADS  Google Scholar 

  56. K. Akiyama et al., Astrophys. J. Lett. 875, L2 (2019). https://doi.org/10.3847/2041-8213/ab0c96. arXiv:1906.11239 [astro-ph.IM]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is supported by Grants F-FA-2021-432, F-FA-2021-510 and MRB-2021-527 of the Uzbekistan Ministry for Innovative Development. A.A. and B.A. acknowledge the support of Uzbekistan Ministry for Innovative Development Grants and the Abdus Salam International Centre for Theoretical Physics under the Grant No. OEA-NT-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrar Hussain.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaev, T., Li, S., Narzilloev, B. et al. Simulated image of the shadow of the Kerr–Newman–NUT–Kiselev black hole in the Rastall gravity with a thin accretion disk. Eur. Phys. J. Plus 138, 47 (2023). https://doi.org/10.1140/epjp/s13360-022-03632-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03632-4

Navigation