Skip to main content
Log in

Model studies of \(V^0\) production ratios in pp collisions at \(\sqrt{\textrm{s}} = 0.2, 0.9\), and 7 TeV

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper has compared \(V^0\) ratios between HIJING, Sibyll, and QGSJET model-based event generators. The ratios under study are \(\overline{\Lambda }\)/\(\Lambda\), \(\overline{\Lambda }\)/\(\textrm{K}^{0}_{\textrm{S}}\) and \(\Xi ^{-}\)/\(\Lambda\) as a function of rapidity y, rapidity loss (\(\Delta y\)) and \(p_{\textrm{T}}\) from pp collisions at \(\sqrt{\textrm{s}}\) = 0.2, 0.9, and 7 TeV and these simulations are then compared with the STAR and LHCb fiducial phase spaces in different \(p_{\textrm{T}}\) regions. Although the models could produce some ratios in a limited \(p_{\textrm{T}}\) or y region, none completely predicts the experimental results. The QGSJET has good predictions with the data in most cases, but since the model does not include \(\Xi\) particle definition, it does not give any predictions for \(\Xi\)/\(\Lambda\) ratios. The extrapolation to the highest possible energies can be studied by re-tuning some basic parameters based on current and previous measurements. These kinds of systematic comparison studies are also helpful in applying certain constraints on the pQCD and non-pQCD-based hadronic event generators to significantly improve the predictions of Standard Model physics at the RHIC and LHC experimental data for the understanding of underlying physics mechanisms in high energy collisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the article and are cited at relevant places within the text as references.

References

  1. H. Yassin, E.R.A. Elyazeed, A.N. Tawfik, Phys. Scripta 95(7), 7 (2020). https://doi.org/10.1088/1402-4896/ab9128

    Article  Google Scholar 

  2. L.-L. Li, M. Ajaz, A. Atiq, M. Atiq, M. Waqas, M.U. Ashraf, A.M. Khubrani, M. Adil Khan, I.S. Yahia, Results Phys. 43, 106058 (2022). https://doi.org/10.1016/j.rinp.2022.106058

    Article  Google Scholar 

  3. M. Waqas, F.-H. Liu, R.-Q. Wang, I. Siddique, Eur. Phys. J. A 56, 188 (2020). https://doi.org/10.1140/epja/s10050-020-00192-y

    Article  ADS  Google Scholar 

  4. M. Waqas, G. X. Peng, M. Ajaz, A. M. Khubrani, E. A. Dawi, M. Adil Khan, Results Phys. 42, 105989 (2022). https://doi.org/10.1016/j.rinp.2022.105989

    Article  Google Scholar 

  5. M. Waqas, G.X. Peng, F.H. Liu et al., Eur. Phys. J. Plus 137, 1041 (2022). https://doi.org/10.1140/epjp/s13360-022-03189-2

    Article  Google Scholar 

  6. M. Waqas, G.X. Peng, F.H. Liu et al., Eur. Phys. J. Plus 137, 1026 (2022). https://doi.org/10.1140/epjp/s13360-022-03191-8

    Article  Google Scholar 

  7. M. M. Aggarwal et al. [STAR], Phys. Rev. C 83, 024901 (2011) https://doi.org/10.1103/PhysRevC.83.024901arXiv:1010.0142 [nucl-ex]

  8. J. Adam et al., Nature Phys. 13, 535–539 (2017). https://doi.org/10.1038/nphys4111

    Article  ADS  Google Scholar 

  9. J. Adam et al., Phys. Lett. B 753, 319–329 (2016). https://doi.org/10.1016/j.physletb.2015.12.030

    Article  ADS  Google Scholar 

  10. M. Ajaz, M. Waqas, L.-L. Li, A. Haj Ismail, U. Tabassam, M. Suleymanov, Eur. Phys. J. Plus 137, 592 (2022). https://doi.org/10.1140/epjp/s13360-022-02805-5

    Article  Google Scholar 

  11. K. Abdel-Waged, N. Felemban, Phys. Rev. C 105, 024909 (2022)

    Article  ADS  Google Scholar 

  12. M. Ajaz, A. Haj Ismail, M. Waqas, M. Suleymanov, A. AbdelKader, R. Suleymanov, Sci. Rep. 12, 8142 (2022). https://doi.org/10.1038/s41598-022-11685-9

    Article  ADS  Google Scholar 

  13. V. Khachatryan et al., JHEP 09, 091 (2010). https://doi.org/10.1007/JHEP09(2010)091

    Article  ADS  Google Scholar 

  14. V. Khachatryan et al., Phys. Lett. B 765, 193–220 (2017). https://doi.org/10.1016/j.physletb.2016.12.009

    Article  ADS  Google Scholar 

  15. J. Adam et al., Nature Phys. 13, 535–539 (2017). https://doi.org/10.1038/nphys4111

    Article  ADS  Google Scholar 

  16. E. Abbas et al., Eur. Phys. J. C 73, 2496 (2013). https://doi.org/10.1140/epjc/s10052-013-2496-5

    Article  ADS  Google Scholar 

  17. A.E.M. Billmeier, J. Phys. G 30, 363–368 (2004). https://doi.org/10.1088/0954-3899/30/1/043

    Article  Google Scholar 

  18. D. Colella, Int. J. Mod. Phys. Conf. Ser. 46, 1860017 (2018). https://doi.org/10.1142/S2010194518600170

    Article  Google Scholar 

  19. R. Aaij et al., JHEP 08, 034 (2011). https://doi.org/10.1007/JHEP08(2011)034

    Article  ADS  Google Scholar 

  20. M. Ajaz, A. Haj Ismail, A. Ahmed et al., Results Phys. 30, 104790 (2021). https://doi.org/10.1016/j.rinp.2021.104790

    Article  Google Scholar 

  21. K. Abdel-Waged, N. Felemban, Eur. Phys. J. A 54, 155 (2018)

    Article  ADS  Google Scholar 

  22. K. Abdel-Waged, Eur. Phys. J. C 82, 65 (2022)

    Article  ADS  Google Scholar 

  23. M. Ajaz, M. Waqas, G.X. Peng et al., Eur. Phys. J. Plus 137, 52 (2022). https://doi.org/10.1140/epjp/s13360-021-02271-5. arXiv:2112.03187 [hep-ph]

    Article  Google Scholar 

  24. S. Ullah, M. Ajaz, Z. Wazir et al., Sci Rep 9, 11811 (2019). https://doi.org/10.1038/s41598-019-48272-4

    Article  ADS  Google Scholar 

  25. M. Ajaz, S. Ullah, Y. Ali, H. Younis, Modern Phys. Lett. A 33, 1850038 (2018). https://doi.org/10.1142/S0217732318500384

    Article  ADS  Google Scholar 

  26. D. d’Enterria, R. Engel, T. Pierog, S. Ostapchenko, K. Werner, Astroparticle Phys. 35, 98–113 (2011). https://doi.org/10.1016/j.astropartphys.2011.05.002

    Article  ADS  Google Scholar 

  27. S. Ullah, Y. Ali, M. Ajaz, U. Tabassam, Q. Ali, Int. J. Modern Phys. A 33, 1850108 (2018). https://doi.org/10.1142/S0217751X18501087

    Article  ADS  Google Scholar 

  28. M. Ajaz, M. Tufail, Y. Ali, Arabian J. Sci. Eng. 45, 411–416 (2019)

    Article  Google Scholar 

  29. S. Ullah, M. Ajaz, Y. Ali, EPL 123, 31001 (2018). https://doi.org/10.1209/0295-5075/123/31001

    Article  ADS  Google Scholar 

  30. M. Ajaz, M. Bilal, Y. Ali, M.K. Suleymanov, K.H. Khan, Modern Phys. Lett. A 34, 1950090 (2019). https://doi.org/10.1142/S0217732319500901

    Article  ADS  Google Scholar 

  31. K. Abdel-Waged, N. Felemban, Eur. Phys. J. Plus 137, 1053 (2022)

    Article  Google Scholar 

  32. M. Ajaz, A.M. Khubrani, M. Waqas, A. Haj Ismail, E.A. Dawi, Results Phys. 36, 105433 (2022). https://doi.org/10.1016/j.rinp.2022.105433

    Article  Google Scholar 

  33. P.-P. Yang, M. Ajaz, M. Waqas, F.-H. Liu, M. Suleymanov, J. Phys. G Nuclear Particle Phys. 49, 055110 (2022). https://doi.org/10.1088/1361-6471/ac5d0b

    Article  ADS  Google Scholar 

  34. M.H.M. Soleiman, Arab J. Nucl. Sci. Appl. 53(1), 46–57 (2020). https://doi.org/10.21608/ajnsa.2019.9617.1182

    Article  Google Scholar 

  35. M. Gyulassy, X.N. Wang, Comput. Phys. Commun. 83, 307 (1994). https://doi.org/10.1016/0010-4655(94)90057-4. arXiv:nucl-th/9502021 [nucl-th]

    Article  ADS  Google Scholar 

  36. X.N. Wang, M. Gyulassy, Phys. Rev. D 45, 844–856 (1992). https://doi.org/10.1103/PhysRevD.45.844

    Article  ADS  Google Scholar 

  37. X.N. Wang, M. Gyulassy, Phys. Rev. D 44, 3501–3516 (1991). https://doi.org/10.1103/PhysRevD.44.3501

    Article  ADS  Google Scholar 

  38. D. Kieda, M. Salamon, B. Dingus, in Proceedings of the 26th International Cosmic Ray Conference (ICRC) (Contributed Papers: Salt Lake City, USA, 1999) August pp. 17-25,

  39. F. Riehn, R. Engel, A. Fedynitch, T.K. Gaisser, T. Stanev, Phys. Rev. D 102(6), 063002 (2020). https://doi.org/10.1103/PhysRevD.102.063002. arXiv:1912.03300 [hep-ph]

    Article  ADS  Google Scholar 

  40. F. Riehn, H. P. Dembinski, R. Engel, A. Fedynitch, T. K. Gaisser, T. Stanev, PoS ICRC2017, 301 (2018). https://doi.org/10.22323/1.301.0301. arXiv:1709.07227 [hep-ph]

    Article  Google Scholar 

  41. S. Ostapchenko, Nucl. Phys. B Proc. Suppl. 151, 143–146 (2006). https://doi.org/10.1016/j.nuclphysbps.2005.07.026. arXiv:hep-ph/0412332 [hep-ph]

    Article  ADS  Google Scholar 

  42. S. Ullah, M. Ajaz, Y. Ali, EPL 123(3), 31001 (2018). https://doi.org/10.1209/0295-5075/123/31001

    Article  ADS  Google Scholar 

  43. M. Ajaz et al., Modern Phys. Lett. A 34, 1950090 (2019). https://doi.org/10.1142/S0217732319500901

    Article  ADS  Google Scholar 

  44. B.I. Abelev et al., Phys. Rev. C 75, 064901 (2007). https://doi.org/10.1103/PhysRevC.75.064901

    Article  ADS  Google Scholar 

  45. R. Aaij et al., JHEP 08, 034 (2011). https://doi.org/10.1007/JHEP08(2011)034

    Article  ADS  Google Scholar 

  46. X.N. Wang, Phys. Rev. C 58, 2321 (1998). https://doi.org/10.1103/PhysRevC.58.2321. arXiv:hep-ph/9804357 [hep-ph]

    Article  ADS  Google Scholar 

  47. A.D. Martin, W.J. Stirling, R.G. Roberts, Phys. Rev. D 50, 6734–6752 (1994). https://doi.org/10.1103/PhysRevD.50.6734. arXiv:hep-ph/9406315 [hep-ph]

    Article  ADS  Google Scholar 

  48. J. Adams et al., Phys. Lett. B 637, 161–169 (2006). https://doi.org/10.1016/j.physletb.2006.04.032

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Deanship of Scientific Research at Ajman University Internal Research Grant No. (DGSR Ref. 2022-IRG-HBS-9) and the Deanship of Scientific Research of Jazan University Jazan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Ajaz or M. Waqas.

Ethics declarations

Conflict of interest

The authors declare that they are in compliance with ethical standards regarding the content of this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ajaz, M., Ashraf, M.U., Waqas, M. et al. Model studies of \(V^0\) production ratios in pp collisions at \(\sqrt{\textrm{s}} = 0.2, 0.9\), and 7 TeV. Eur. Phys. J. Plus 138, 14 (2023). https://doi.org/10.1140/epjp/s13360-022-03603-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03603-9

Navigation