Skip to main content
Log in

Manipulation of accelerating curved vortex beam modulated by inhomogeneous spiral phase

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

Accelerating beam have been proved a series of characteristics, such as diffraction-free, self-healing and self-bent transmission. Here, we present a novel phase structure consisting of an inhomogeneous phase and a helical phase to produce accelerating curved vortex beam (ACVB), which can be used to deliver carriers along a particular curve. With the scalar diffraction theory, we derive and calculate the field intensity distribution of ACVB. In our experiment, the phase mask projected on spatial light modulator is used to generate ACVB, which is consistent with the corresponding simulation results. It is found that ACVB is similar to Airy beam in x-y plane and z direction, and still has self-accelerating property. Then, the experiment demonstrates the whole process of trapping particles under ACVB irradiation, and they are linearly arranged on the focal plane of ACVB. This study will facilitate optical micromanipulation and biophotonics research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

The data underlying the results can be obtained from the corresponding author on reasonable request. This manuscript has associated data in a data repository. [Authors’ comment: All data included in this manuscript are available upon request by contacting with the corresponding author.]

References

  1. M.V. Berry, N.L. Balazs, Am. J. Phys. 47, 264 (1979)

    Article  ADS  Google Scholar 

  2. G.A. Siviloglou, D.N. Christodoulides, Opt. Lett. 32, 979–981 (2007)

    Article  ADS  Google Scholar 

  3. G.A. Siviloglou, J. Broky, A. Dogariu, D.N. Christodoulides, Opt. Lett. 33, 207–209 (2008)

    Article  ADS  Google Scholar 

  4. N. Voloch-Bloch, Y. Lereah, Y. Lilach, A. Gover, A. Arie, Nature 494, 331–335 (2013)

    Article  ADS  Google Scholar 

  5. V.C. Palea, L. Preda, Math. Methods Appl. Sci. 44, 11157 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  6. Y. Zhang, H. Zhong, M. Belic, Y. Zhang, Appl. Sci. 7, 341 (2017)

    Article  Google Scholar 

  7. Z.-X. Li, Y.-P. Ruan, J. Tang, Y. Liu, J.-J. Liu, J.-S. Tang, H. Zhang, K.-Y. Xia, Y.-Q. Lu, Opt. Express 29, 40187 (2021)

    Article  ADS  Google Scholar 

  8. O.M. Maragò, P.H. Jones, P.G. Gucciardi, G. Volpe, A.C. Ferrari, Nat. Nanotechnol. 8, 807–819 (2013)

    Article  ADS  Google Scholar 

  9. B. Suarez, A. Neves, M. Gesualdi, Opt. Laser Technol. 135, 106678 (2020)

    Article  Google Scholar 

  10. P. Zhang, J. Prakash, Z. Zhang, M. Mills, N. Efremidis, D. Christodoulides, Z. Chen, Opt. Lett. 36, 2883–2885 (2011)

    Article  ADS  Google Scholar 

  11. A. Ivinskaya, N. Kostina, A. Proskurin, M. Petrov, A. Bogdanov, S. Sukhov, A. Krasavin, A. Karabchevsky, A. Shalin, P. Ginzburg, ACS Photonics 5, 4371 (2018)

    Article  Google Scholar 

  12. P. Polynkin, M. Kolesik, J. Moloney, G. Siviloglou, D. Christodoulides, Science 324, 229–232 (2009)

    Article  ADS  Google Scholar 

  13. T. Vettenburg, H. Dalgarno, J. Nylk, C. Coll-Lladó, D. Ferrier, T. Čižmár, F. Gunn-Moore, K. Dholakia, Nat. Methods 11, 541–544 (2014)

    Article  Google Scholar 

  14. N. Hosny, J. Seyforth, G. Spickermann, T. Mitchell, P. Almada, R. Chesters, S. Mitchell, G. Chennell, A. Vernon, K. Cho, D. Srivastava, R. Forster, T. Vettenburg, Biomed. Opt. Express 11, 3927–3935 (2020)

    Article  Google Scholar 

  15. L. Marrucci, C. Manzo, D. Paparo, Phys. Rev. Lett. 96, 163905 (2006)

    Article  ADS  Google Scholar 

  16. S. Li, J. Wang, Opt. Express 25, 21537 (2017)

    Article  ADS  Google Scholar 

  17. A. Callegari, A. Magazzù, A. Gambassi, Eur. Phys. J. Plus 136, 213 (2021)

    Article  Google Scholar 

  18. G. Pesce, P.H. Jones, O.M. Maragò, G. Volpe, Eur. Phys. J. Plus 135, 949 (2020)

    Article  Google Scholar 

  19. G. Liu, Z. Huang, C. Yan, S. Li, C. Xu, L. Song, D. Kuang, Nano Res. 15, 6686–6694 (2022)

    Article  ADS  Google Scholar 

  20. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H.A.O. Huang, A. Willner, S. Ramachandran, Science 340, 1545–1548 (2013)

    Article  ADS  Google Scholar 

  21. J. Zhou, Y. Liu, Y. Ke, H. Luo, S. Wen, Opt. Lett. 40, 3193 (2015)

    Article  ADS  Google Scholar 

  22. H. Li, H. Liu, X. Chen, Opt. Express 26, 21204 (2018)

    Article  ADS  Google Scholar 

  23. B.-Y. Wei, Q. Shuxia, S. Liu, P. Li, Y. Zhang, H. Lei, J. Zhong, W. Hu, Y. Lu, J. Zhao, Opt. Express 27, 18848 (2019)

    Article  ADS  Google Scholar 

  24. M. Suzuki, K. Yamane, T. Omatsu, R. Morita, New J. Phys. 23, 113043 (2021)

    Article  ADS  Google Scholar 

  25. R. Cao, Y. Yang, J. Wang, J. Bu, M. Wang, X.-C. Yuan, Appl. Phys. Lett. 99, 261106 (2011)

    Article  ADS  Google Scholar 

  26. D. Kuang, Y. Cao, T. Lepine, W. Mi, IEEE Photonics J. 7, 1 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by Natural Science Foundation of Tianjin City, Grant Number 18JCZDJC38200, the Fundamental Research Funds for the Central Universities, Nankai University, Grant No. 63201178.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dengfeng Kuang.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, C., Liu, G., Zhang, H. et al. Manipulation of accelerating curved vortex beam modulated by inhomogeneous spiral phase. Eur. Phys. J. Plus 137, 1200 (2022). https://doi.org/10.1140/epjp/s13360-022-03391-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03391-2

Navigation