Skip to main content
Log in

Noether currents in theories with higher derivatives and theories with differential field transformation in action (DFTA)

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The article is devoted to the investigation of the Noether currents and integrals of motion in the special subclass of theories with higher field derivatives — theories under differential field transformations in action (DFTA). Under fairly general assertions, we derive a simple representation for the integrals as sums of “old” integrals of motion, terms that vanish on the “old” equations of motion and surface integrals. We show that for some cosmological theories of that kind with high-order derivatives the last contribution can violate gauge invariance, specifically, diffeomorphisms. Then we investigate ambiguity of the Noether procedure for higher derivative theories and fix it in the way the problem resolves in quite general setting. The obtained results are discussed for the several extensions of the General Relativity, which are obtained by DFTA, in particular, for mimetic, disformal and Regge–Teitelboim theories of gravity. In particular, we calculate Iyer–Wald black hole entropy from the corrected currents and also discuss the derivation of the integral constraints on Sachs–Wolfe effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No Data associated in the manuscript.

Notes

  1. In the context of Regge–Teitelboim theory there exist many examples of how one GR solution can have multiple different embeddings, for examples see Schwarzshild [59,60,61] or Reissner-Nördstrom [62] solutions.

  2. In work [7] the ambiguity (92) is parametrized in another way, namely, by the choice of the arguments in the Lagrangian. At the moment, it is not clear enough how this method and the transformation (92) agree with each other.

References

  1. S. Nojiri, S.D. Odintsov, Phys. Rep. 505(2), 59–144 (2011). arXiv:1011.0544

    Article  ADS  MathSciNet  Google Scholar 

  2. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Phys. Rep. 692, 1–104 (2017). arXiv:1705.11098

    Article  ADS  MathSciNet  Google Scholar 

  3. M. Ishak, Liv. Rev. Rel. 22, 1 (2018). arXiv:1806.10122

    Google Scholar 

  4. T.-J. Chen, M. Fasiello, A.J. Lim, A.E. Tolley, JCAP 2013(02), 042–042 (2013). arXiv:1209.0583

    Article  Google Scholar 

  5. E. Noether, Gott. Nachr. 1918, 235–257 (1918). arXiv:physics/0503066

    Google Scholar 

  6. V. Iyer, R.M. Wald, Phys. Rev. D 50, 846–864 (1994). arXiv:gr-qc/9403028

    Article  ADS  MathSciNet  Google Scholar 

  7. A.N. Petrov, R.R. Lompay, Gen. Rel. Grav. 45(3), 545–579 (2013). arXiv:1211.3268

    Article  ADS  Google Scholar 

  8. E.D. Emtsova, A.N. Petrov, A.V. Toporensky, Class. Quant. Grav. 37(9), 095006 (2020). arXiv:2105.13312

    Article  ADS  Google Scholar 

  9. E.D. Emtsova, M. Krššák, A.N. Petrov, A.V. Toporensky, EPJ C 81(8), 743 (2021). arXiv:1910.08960

    ADS  Google Scholar 

  10. G.Z. Tóth, Class. Quant. Grav. 35(18), 185009 (2018). arXiv:1801.04710

    Article  ADS  Google Scholar 

  11. Yu.N. Obukhov, F. Portales-Oliva, D. Puetzfeld, G.F. Rubilar, Phys. Rev. D 92, 104010 (2015). arXiv:1507.02191

    Article  ADS  MathSciNet  Google Scholar 

  12. S. Capozziello, M. De Laurentis, S.D. Odintsov, EPJ C 72(7), 2068 (2012). arXiv:1206.4842

    ADS  Google Scholar 

  13. G. Barnich, F. Brandt, Nucl. Phys. B 633(1), 3–82 (2002). arXiv:hep-th/0111246

    Article  ADS  Google Scholar 

  14. A.A. Sheykin, D.P. Solovyev, V.V. Sukhanov, S.A. Paston, Symmetry 12(2), 240 (2020). arXiv:2002.01745

    Article  ADS  Google Scholar 

  15. A.H. Chamseddine, V. Mukhanov, A. Vikman, J. Cosm. Astopart. Phys. 06, 017 (2014). arXiv:1403.3961

    Article  ADS  Google Scholar 

  16. D. Momeni, A. Altaibayeva, R. Myrzakulov, Int. J. Geom. Methods Mod. Phys. 11(10), 1450091 (2014). arXiv:1407.5662

    Article  MathSciNet  Google Scholar 

  17. L. Sebastiani, S. Vagnozzi, R. Myrzakulov, Adv. High Energy Phys. 2017, 3156915 (2017). arXiv:1612.08661

    Article  Google Scholar 

  18. F. Frederico Arroja, N. Bartolo, P. Karmakar, S. Matarrese, J. Cosm. Astropart. Phys. 2015(09), 051 (2015)

    Article  Google Scholar 

  19. S. Nojiri, S.D. Odintsov, V.K. Oikonomou, Phys. Lett. B 775, 44–49 (2017). arXiv:1710.07838

    Article  ADS  MathSciNet  Google Scholar 

  20. S. Nojiri, S.D. Odintsov, Mod. Phys. Lett. A 29(40), 1450211 (2014). arXiv:1408.3561

    Article  ADS  Google Scholar 

  21. S.D. Odintsov, V.K. Oikonomou, Phys. Rev. D 93, 023517 (2016). arXiv:1511.04559

    Article  ADS  MathSciNet  Google Scholar 

  22. S. Vagnozzi, Class. Quant. Grav. 34(18), 185006 (2017). arXiv:1708.00603

    Article  ADS  MathSciNet  Google Scholar 

  23. A. Casalino, M. Rinaldi, L. Sebastiani, S. Vagnozzi, Class. Quant. Grav. 36(1), 017001 (2018). arXiv:1811.06830

    Article  ADS  Google Scholar 

  24. G. Cognola, R. Myrzakulov, L. Sebastiani, S. Vagnozzi, S. Zerbini, Class. Quant. Grav. 33(22), 225014 (2016). arXiv:1601.00102

    Article  ADS  Google Scholar 

  25. M.A. Gorji, S. Mukohyama, H. Firouzjahi, S.A.H. Mansoori, JCAP 2018(08), 047–047 (2018). arXiv:1807.06335

    Article  Google Scholar 

  26. M.A. Gorji, S. Mukohyama, H. Firouzjahi, JCAP 2019(05), 019–019 (2019). arXiv:1903.04845

    Article  Google Scholar 

  27. T. Regge, C. Teitelboim, General relativity à la string: a progress report, in Proceedings of the First Marcel Grossmann Meeting, Trieste, Italy, 1975, edited by R. Ruffini, 77–88, North Holland, Amsterdam, 1977. arXiv:1612.05256

  28. V. Tapia, Class. Quant. Grav. 6, L49 (1989)

    Article  ADS  Google Scholar 

  29. M. Pavsic, Class. Quant. Grav. 2, 869 (1985). arXiv:1403.6316

    Article  ADS  Google Scholar 

  30. S. Deser, F.A.E. Pirani, D.C. Robinson, Phys. Rev. D 14(12), 3301–3303 (1976)

    Article  ADS  Google Scholar 

  31. R. Capovilla, J. Guven, E. Rojas, Class. Quant. Grav. 21, 5563–5586 (2004). hep-th/0404178

    Article  ADS  Google Scholar 

  32. D. Karasik, A. Davidson, Phys. Rev. D 67, 064012 (2003). arXiv:gr-qc/0207061

    Article  ADS  MathSciNet  Google Scholar 

  33. A.H. Chamseddine, V. Mukhanov, JHEP 2013(11), 135 (2013). arXiv:1308.5410

    Article  ADS  Google Scholar 

  34. A. Golovnev, Phys. Lett. B 728, 39–40 (2014). arXiv:1310.2790

    Article  ADS  Google Scholar 

  35. C. Misner, K. Thorne, J. Wheeler, Gravitation (Freeman, Dallas, 1973)

    Google Scholar 

  36. L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields (Butterworth-Heinemann, Oxford, 1987)

    MATH  Google Scholar 

  37. V. Yu. Baryshev, Energy-momentum of the gravitational field: crucial point for gravitation physics and cosmology, in Proceedings of the International Conference on Problems of Practical Cosmology, vol. 1 (2008), pp. 276–286. arXiv:0809.2323

  38. B. Julia, S. Silva, Class. Quant. Grav. 15, 2173–2215 (1998). arXiv:gr-qc/9804029

    Article  ADS  Google Scholar 

  39. S.V. Babak, L.P. Grishchuk, Phys. Rev. D 61, 024038 (1999). arXiv:gr-qc/9907027

    Article  ADS  Google Scholar 

  40. A. Komar, Phys. Rev. 113, 934–936 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  41. S.G. Avery, B.U.W. Schwab, JHEP 2016, 31 (2016). arXiv:1510.07038

    Article  Google Scholar 

  42. J. Katz, Class. Quant. Grav. 2, 423 (1985)

    Article  ADS  Google Scholar 

  43. J. Katz, J. Bicak, D. Lynden-Bell, Phys. Rev. D 55, 5759 (1997). arXiv:gr-qc/0504041

    Article  Google Scholar 

  44. P.T. Chruściel, Commun. Math. Phys. 120(2), 233–248 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  45. D. Bak, D. Cangemi, R. Jackiw, Phys. Rev. D 49, 5173–5181 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  46. B. Julia, S. Silva, Class. Quant. Grav. 17(22), 4733–4743 (2000). arXiv:gr-qc/0005127

    Article  ADS  Google Scholar 

  47. A.N. Petrov, S.M. Kopeikin, R.R. Lompay, B. Tekin, Metric Theories of Gravity (De Gruyter, Berlin, Boston, 2017)

    Book  MATH  Google Scholar 

  48. R. Wald, J. Math. Phys. 31(10), 2378–2384 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  49. G.Z. Tóth, Phys. Rev. D 96, 025018 (2017). arXiv:1610.03281

    Article  ADS  MathSciNet  Google Scholar 

  50. J.D. Bekenstein, Phys. Rev. D 48, 3641–3647 (1993). arXiv:gr-qc/9211017

    Article  ADS  MathSciNet  Google Scholar 

  51. N. Deruelle, J. Rua, J. Cosm, Astropart. Phys. 2014(09), 1409 (2014). arXiv:1407.0825

    Google Scholar 

  52. A. Golovnev, in Introduction to Teleparallel Gravities (2018). arXiv:1801.06929

  53. G. Barnich, F. Brandt, M. Henneaux, Phys. Rep. 338(5), 439–569 (2000). arXiv:hep-th/0002245

    Article  ADS  MathSciNet  Google Scholar 

  54. S. Samokhvalov, Gen. Rel. Grav. 53(4), 44 (2021). arXiv:2008.08967

    Article  ADS  MathSciNet  Google Scholar 

  55. R.V. Ilin, S.A. Paston, Universe 6(10), 173 (2020). arXiv:2010.07073

    Article  ADS  Google Scholar 

  56. S.W. Hawking, G.T. Horowitz, Class. Quant. Grav. 13, 1487–1498 (1996). arXiv:gr-qc/9501014

    Article  ADS  Google Scholar 

  57. F.H.J. Cornish, T.G. Cowling, Proc. R. Soc. Lond. A 282(1390), 358–371 (1964)

    Article  ADS  Google Scholar 

  58. A.H. Chamseddine, V. Mukhanov, T.B. Russ, EPJ C 79(7), 558 (2019). arXiv:1905.01343

    ADS  Google Scholar 

  59. S.A. Paston, A.A. Sheykin, Class. Quant. Grav. 29, 095022 (2012). arXiv:1202.1204

    Article  ADS  Google Scholar 

  60. E. Kasner, Am. J. Math. 43(2), 126–129 (1921)

    Article  Google Scholar 

  61. C. Fronsdal, Phys. Rev. 116(3), 778–781 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  62. S.A. Paston, A.A. Sheykin, SIGMA 10, 003 (2014). arXiv:1304.6550

    Google Scholar 

  63. A.V. Pogorelov, Extrinsic Geometry of Convex Surfaces, Translations of Mathematical Monographs (American Mathematical Society, New York, 1973)

    Book  Google Scholar 

  64. I. Ivanova-Karatopraklieva, P.E. Markov, I. Kh Sabitov, J. Math. Sci. 149(1), 861 (2008)

    Article  MathSciNet  Google Scholar 

  65. R.M. Wald, General Relativity (Chicago University Press, Chicago, 1984)

    Book  MATH  Google Scholar 

  66. C. Moller, Ann. Phys. 4(4), 347–371 (1958)

    Article  ADS  Google Scholar 

  67. P.G. Bergmann, Phys. Rev. 75, 680–685 (1949)

    Article  ADS  MathSciNet  Google Scholar 

  68. A. Davidson, U. Paz, Found. Phys. 30(5), 785–794 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  69. A. Aguilar-Salas, A. Molgado, E. Rojas, Class. Quant. Grav. 37(14), 145003 (2020). arXiv:2004.01650

    Article  ADS  Google Scholar 

  70. S.A. Paston, Universe 6(10), 163 (2020). arXiv:2009.06950

    Article  ADS  Google Scholar 

  71. S.A. Paston, A.N. Semenova, Int. J. Theor. Phys. 49(11), 2648–2658 (2010). arXiv:1003.0172

    Article  Google Scholar 

  72. S.A. Paston, E.N. Semenova, Grav. Cosm. 21(3), 181–190 (2015). arXiv:1509.01529

    Article  ADS  Google Scholar 

  73. S. Bahamonde, S.D. Odintsov, V.K. Oikonomou, M. Wright, Ann. Phys. 373, 96–114 (2016). arXiv:1603.05113

    Article  ADS  Google Scholar 

  74. T.P. Sotiriou, V. Faraoni, Rev. Mod. Phys. 82, 451–497 (2010). arXiv:0805.1726

    Article  ADS  Google Scholar 

  75. N. Deruelle, J. Katz, Class. Quant. Grav. 23(3), 753–759 (2006). arXiv:gr-qc/0512077

    Article  ADS  Google Scholar 

  76. R.M. Wald, Phys. Rev. D 48, R3427–R3431 (1993). arXiv:gr-qc/9307038

    Article  ADS  Google Scholar 

  77. V. Iyer, R.M. Wald, Phys. Rev. D 50, 846–864 (1994). arXiv:gr-qc/9403028

    Article  ADS  MathSciNet  Google Scholar 

  78. M.A. Gorji, A. Allahyari, M. Khodadi, H. Firouzjahi, Phys. Rev. D 101, 124060 (2020). arXiv:1912.04636

    Article  ADS  MathSciNet  Google Scholar 

  79. J. Traschen, Phys. Rev. D 31, 283–289 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  80. J. Traschen, D.M. Eardley, Phys. Rev. D 34, 1665–1679 (1986)

    Article  ADS  Google Scholar 

  81. N. Rosen, Phys. Rev. 57, 147–150 (1940)

    Article  ADS  MathSciNet  Google Scholar 

  82. N. Deruelle, J.-P. Uzan, Int. J. Theor. Phys. 36(11), 2461–2468 (1997). arXiv:gr-qc/9804049

    Article  Google Scholar 

  83. S.A. Paston, Phys. Rev. D 96, 084059 (2017). arXiv:1708.03944

    Article  ADS  MathSciNet  Google Scholar 

  84. S.A. Paston, A.A. Sheykin, EPJ C 78(12), 989 (2018). arXiv:1806.10902

    ADS  Google Scholar 

  85. D.A. Grad, R.V. Ilin, S.A. Paston, A.A. Sheykin, Int. J. Mod. Phys. D 27, 1750188 (2018). arXiv:1707.01074

    Article  ADS  Google Scholar 

  86. J. Lee, R.M. Wald, J. Math. Phys. 31(3), 725–743 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  87. B. Julia, S. Silva, in On Covariant Phase Space Methods (2002). arXiv:hep-th/0205072

  88. D. Harlow, J. Wu, JHEP 2020(10), 146 (2020). arXiv:1906.08616

    Article  ADS  Google Scholar 

  89. J. Margalef-Bentabol, E.J.S. Villaseñor, Phys. Rev. D 103, 025011 (2021). arXiv:2008.01842

    Article  ADS  Google Scholar 

  90. S. Capozziello, K.F. Dialektopoulos, Int. J. Geom. Meth. Mod. Phys. arXiv:1808.03484

  91. S. Capozziello, G. Lambiase, Gen. Rel. Grav. 32(2), 295–311 (2000). arXiv:gr-qc/9912084

    Article  ADS  Google Scholar 

  92. S. Capozziello, S. Nesseris, L. Perivolaropoulos, JCAP 2007(12), 009 (2007). arXiv:0705.3586

    Article  Google Scholar 

Download references

Acknowledgements

The work of the author is supported by RFBR grant No. 20-01-00081. The author is grateful to A.N. Petrov, G. Barnich, and S.A. Paston for the important clarifications and useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Ilin.

Appendix

Appendix

1.1 Explicit form of \(L_{(k)a}{}^{\rho \alpha _1..\alpha _k}\)

The coefficients \(L_{(k)a}{}^{\rho \alpha _1..\alpha _k}\) defined in the decomposition (39) plays key role in the calculations throughout the paper. These coefficients are calculated, for example, in [55]:

$$\begin{aligned} L_{(k)}{}_a{}^{\rho \gamma _1..\gamma _k} ={}&\theta \left( N_d-k+1/2\right) \sum _{l = \max (k-N+1,0)}^{\min (k,M)}\Omega {}^{\rho }{}_a{}^{\gamma _1..\gamma _k}(k-l,l)+ U_a{}^{\rho \gamma _1...\gamma _k}, \end{aligned}$$
(120)

where

$$\begin{aligned} \Omega {}^{\rho }{}_a{}^{\alpha _1..\alpha _m\beta _1..\beta _l}(m,l) \equiv&\frac{1}{(m+l)!}\Bigg \{\sum _{j=m+1}^N\sum _{i = 0}^{j-m-1}(-1)^iC^m_{j-i-1}(\partial _{\alpha _{j-i}..\alpha _{j-1}}Z^{a\rho \alpha _1..\alpha _{j-1}})\nonumber \\&\times \partial _{\alpha _{m+1}..\alpha _{j-i-1}}H_{(l)}{}_{a\mu }{}^{\beta _1..\beta _l}\Bigg \}^{\alpha _1..\alpha _m\beta _1..\beta _l}, \end{aligned}$$
(121)

and \(U_\alpha {}^{\rho \gamma _1...\gamma _k}\) are defined as follows:

$$\begin{aligned} K^{\rho } \equiv -\sum _{i = 0}^CU_a{}^{\rho \alpha _1\dots \alpha _i}\partial _{\alpha _1\dots \alpha _i}\xi ^a. \end{aligned}$$
(122)

Here we used \(K^{\rho }\) defined in (9).

1.2 Commutators for \(N_o = 2\) case

It is clear that the commutation relations (77)–(79) are still valid for the case \(N_o = 2\) considered in Sect. 5.2. Aside from these, there is also need for the commutators of \(\partial _{\alpha \beta }\) with \(\partial /\partial \partial _\rho \varphi _A, \partial /\partial \partial _{\rho \beta }\varphi _A\) and \(\partial /\partial \partial _{\rho \beta \gamma }\varphi _A\). All the needed commutation relations are written down below:

$$\begin{aligned}&\left[ \frac{\partial }{\partial \varphi _A},\partial _{\alpha \beta }\right] \lambda _B = 0, \end{aligned}$$
(123)
$$\begin{aligned}&\left[ \frac{\partial }{\partial \partial _\rho \varphi _A},\partial _{\alpha \beta }\right] \lambda _B = \left\{ \delta _\alpha ^{\rho } \partial _\beta \left( \frac{\partial \lambda _B}{\partial \varphi _A}\right) \right\} _{\alpha \beta }, \end{aligned}$$
(124)
$$\begin{aligned}&\left[ \frac{\partial }{\partial \partial _{\rho \lambda }\varphi _A},\partial _{\alpha \beta }\right] \lambda _B = \frac{1}{2}\left\{ \left\{ \delta ^\lambda _\beta \partial _\alpha \left( \frac{\partial \lambda _B}{\partial \partial _\rho \varphi _A}\right) \right\} _{\alpha \beta }\right\} ^{\lambda \rho }+\frac{1}{2}\frac{\partial \lambda _B}{\partial \varphi _A}\left\{ \delta ^{\rho } _\alpha \delta ^\lambda _\beta \right\} ^{\rho \lambda }, \end{aligned}$$
(125)
$$\begin{aligned}&\left[ \frac{\partial }{\partial \partial _{\rho \varphi \tau }\varphi _A},\partial _{\alpha \beta }\right] \lambda _B = \frac{1}{6}\left\{ \frac{\partial \lambda _B}{\partial \partial _\rho \varphi _A}\delta ^\varphi _\alpha \delta ^\tau _\beta \right\} ^{\rho \varphi \tau }. \end{aligned}$$
(126)

1.3 Derivation of the formula 32

To derive (32) one can use (31) and substitute it to the (23). However, one should first make change \(\alpha _{p+1}\rightarrow \rho\). As the index \(\alpha _{p+1}\) is present in antisymmetrizer, one needs to be careful and should properly split sums before applying the change:

$$\begin{aligned}&K_{(p)a}{}^{\alpha _{p+1}\alpha _1..\alpha _{p}} = \frac{1}{p+1}\sum _{i = 1}^p\left[ K_{(p)a}{}^{\alpha _{p+1}\alpha _1..\alpha _p}\right] ^{\alpha _{p+1}\alpha _i}\end{aligned}$$
(127)
$$\begin{aligned} \nonumber -&\sum _{k = p+1}^{N_d}\frac{(-1)^{k-p}}{k+1}\partial _{\alpha _{p+2}..\alpha _{k+1}}\left[ K_{(k)a}{}^{\alpha _{p+1}\alpha _1..\alpha _p\alpha _{p+2}..\alpha _{k+1}}\right] ^{\alpha _{p+1}\alpha _{k+1}}\\ \nonumber&+\sum _{k=p+1}^{N_d}\sum _{i = 1}^p\frac{(-1)^{k-p}}{k+1}\partial _{\alpha _{p+2}..\alpha _{k+1}}\left[ K_{(k)a}{}^{\alpha _{k+1}\alpha _1..\alpha _p\alpha _{p+1}\alpha _{p+2}..\alpha _{k}}\right] ^{\alpha _{k+1}\alpha _i}\\&+\sum _{k=p+2}^{N_d}\sum _{i = p+2}^k\frac{(-1)^{k-p}}{k+1}\partial _{\alpha _{p+2}..\alpha _{k+1}}\left[ K_{(k)a}{}^{\alpha _{k+1}\alpha _1..\alpha _{k}}\right] ^{\alpha _{k+1}\alpha _i}. \end{aligned}$$
(128)

The last term equals zero due to the symmetry of the operator \(\partial _{\alpha _{p+2}..\alpha _{k+1}}\) and antisymmetrization of \(K_{(k)a}{}^{\alpha _{k+1}\alpha _1..\alpha _{k}}\) with respect to \(\alpha _{k+1}, \alpha _i\) for \(i\in [p+2,k+1]\). Hence, one can proceed to the change \(\alpha _{p+1}\rightarrow \rho\):

$$\begin{aligned}&K_{(p)a}{}^{\rho \alpha _1..\alpha _{p}} = \frac{1}{p+1}\sum _{i = 1}^p\left[ K_{(p)a}{}^{\rho \alpha _1..\alpha _p}\right] ^{\rho \alpha _i}\\ -&\sum _{k = p+1}^{N_d}\frac{(-1)^{k-p}}{k+1}\partial _{\alpha _{p+2}..\alpha _{k+1}}\left[ K_{(k)a}{}^{\rho \alpha _1..\alpha _p\alpha _{p+2}..\alpha _{k+1}}\right] ^{\rho \alpha _{k+1}}\\&+\sum _{k=p+1}^{N_d}\sum _{i = 1}^p\frac{(-1)^{k-p}}{k+1}\partial _{\alpha _{p+2}..\alpha _{k+1}}\left[ K_{(k)a}{}^{\alpha _{k+1}\rho \alpha _1..\alpha _p\alpha _{p+2}..\alpha _{k}}\right] ^{\alpha _{k+1}\alpha _i}. \end{aligned}$$

To simplify this further it is convenient to shift indices for the operators \(\partial _{\alpha _{p+2}..\alpha _{k+1}}\) (as they are dummy) by \(-1\). For convenience we also want to increase inner sum’s upper limit to \(k-1\) as it does not change anything due to the symmetry of the operator \(\partial _{\alpha _{p+2}..\alpha _{k+1}}\) (\(\partial _{\alpha _{p+1}..\alpha _{k}}\) after the mentioned index shift):

$$\begin{aligned} K_{(p)a}{}^{\rho \alpha _1..\alpha _{p}} =&\frac{1}{p+1}\sum _{i = 1}^p\left[ K_{(p)a}{}^{\rho \alpha _1..\alpha _p}\right] ^{\rho \alpha _i}- \sum _{k = p+1}^{N_d}\frac{(-1)^{k-p}}{k+1}\partial _{\alpha _{p+1}..\alpha _{k}}\left[ K_{(k)a}{}^{\rho \alpha _1..\alpha _{k}}\right] ^{\rho \alpha _{k}}\end{aligned}$$
(129)
$$\begin{aligned}&+\sum _{k=p+1}^{N_d}\sum _{i = 1}^{k-1}\frac{(-1)^{k-p}}{k+1}\partial _{\alpha _{p+1}..\alpha _{k}}\left[ K_{(k)a}{}^{\alpha _{k}\rho \alpha _1..\alpha _{k-1}}\right] ^{\alpha _{k}\alpha _i}. \end{aligned}$$
(130)

Now one can multiply this expression by \(\partial _{\alpha _1..\alpha _p}\xi ^{a}\) and substitute the result into (32):

$$\begin{aligned} -J^{\prime\rho } =&\sum _{p = 1}^{N_d}\sum _{i = 1}^p\frac{1}{p+1}\left[ K_{(p)a}{}^{\rho \alpha _1..\alpha _p}\right] ^{\rho \alpha _i}\partial _{\alpha _1..\alpha _p}\xi ^{a}-\sum _{p = 0}^{N_d}\sum _{k = p+1}^{N_d}\frac{(-1)^{k-p}}{k+1}\partial _{\alpha _{p+1}..\alpha _{k}}\left[ K_{(k)a}{}^{\rho \alpha _1..\alpha _{k}}\right] ^{\rho \alpha _{k}} \end{aligned}$$
(131)
$$\begin{aligned}&\times \partial _{\alpha _1..\alpha _p}\xi ^{a}+\sum _{p = 0}^{N_d}\sum _{k=p+1}^{N_d}\sum _{i = 1}^{k-1}\frac{(-1)^{k-p}}{k+1}\partial _{\alpha _{p+1}..\alpha _{k}}\left[ K_{(k)a}{}^{\alpha _{k}\rho \alpha _1..\alpha _{k-1}}\right] ^{\alpha _{k}\alpha _i}\partial _{\alpha _1..\alpha _p}\xi ^{a}. \end{aligned}$$
(132)

Our next step is to convert r.h.s to the full derivative. We start with the first two terms by changing the summation order in the second term:

$$\begin{aligned} \sum _{p = 0}^{N_d-1}\sum _{k = p+1}^{N_d} = \sum _{k = 1}^{N_d}\sum _{p = 0}^{k - 1}. \end{aligned}$$
(133)

After that one should interchange indices \(k\leftrightarrow p\) in the second term and change them\(i\rightarrow k\) in the first one. Finally, after applying shift \(k\rightarrow k+1\) in the second term the can be properly merged:

$$\begin{aligned} -J^{\prime\rho } =&\sum _{p = 1}^{N_d}\sum _{k = 1}^p\frac{1}{p+1}\left[ \left[ K_{(p)a}{}^{\rho \alpha _1..\alpha _p}\right] ^{\rho \alpha _k}\partial _{\alpha _1..\alpha _p}\xi ^{a}+(-1)^{p-k}\partial _{\alpha _k..\alpha _{p}}\left[ K_{(p)a}{}^{\rho \alpha _1..\alpha _p}\right] ^{\rho \alpha _p}\partial _{\alpha _1..\alpha _{k-1}}\xi ^{a}\right] \nonumber \\&+\sum _{p = 0}^{N_d}\sum _{k=p+1}^{N_d}\sum _{i = 1}^{k-1}\frac{(-1)^{k-p}}{k+1}\partial _{\alpha _{p+1}..\alpha _{k}}\left[ K_{(k)a}{}^{\alpha _{k}\rho \alpha _1..\alpha _{k-1}}\right] ^{\alpha _{k}\alpha _i}\partial _{\alpha _1..\alpha _p}\xi ^{a}. \end{aligned}$$
(134)

First term can be further simplified by subsequently using Leibniz’ rule in the form similar to (13):

$$\begin{aligned} {\begin{matrix} &{}(-1)^{p-k}\partial _{\alpha _k..\alpha _{p}}(Y^{\alpha _1..\alpha _p})\partial _{\alpha _1..\alpha _{k-1}}Q\\ &{}=\sum _{i = k}^p(-1)^{p-i}\partial _{\alpha _i}\left( \partial _{\alpha _{i+1}..\alpha _p}Y^{\alpha _1..\alpha _p}\partial _{\alpha _1..\alpha _{i-1}}\xi ^{\mu }\right) - Y^{\alpha _1\dots \alpha _p}\partial _{\alpha _1..\alpha _p}Q, \end{matrix}} \end{aligned}$$
(135)

which is true for the arbitrary functions \(Y^{\alpha _1..\alpha _p}\) (even without any index symmetry) and the arbitrary function Q. Then by using the simple relation:

$$\begin{aligned} \left[ K_{(p)a}{}^{\rho \alpha _1..\alpha _p}\right] ^{\rho \alpha _p}\partial _{\alpha _1..\alpha _{p}}\xi ^{a} = \left[ K_{(p)a}{}^{\rho \alpha _1..\alpha _p}\right] ^{\rho \alpha _k}\partial _{\alpha _1..\alpha _{p}}\xi ^{a},\;\; k\le p,\;\; p\ge 1, \end{aligned}$$
(136)

one may rewrite (134) in the following form:

$$\begin{aligned} -J^{\prime\rho } =&\sum _{p = 1}^{N_d}\sum _{k = 1}^p\sum _{i= k}^p\frac{(-1)^{p-i}}{p+1}\partial _{\alpha _i}\left( \partial _{\alpha _{i+1}..\alpha _p}\left[ K_{(p)a}{}^{\rho \alpha _1..\alpha _p}\right] ^{\rho \alpha _p}\partial _{\alpha _1..\alpha _{i-1}}\xi ^{a}\right) \nonumber \\&+\sum _{p = 0}^{N_d}\sum _{k=p+1}^{N_d}\sum _{i = 1}^{k-1}\frac{(-1)^{k-p}}{k+1}\partial _{\alpha _{p+1}..\alpha _{k}}\left[ K_{(k)a}{}^{\alpha _{k}\rho \alpha _1..\alpha _{k-1}}\right] ^{\alpha _{k}\alpha _i}\partial _{\alpha _1..\alpha _p}\xi ^{a}. \end{aligned}$$
(137)

The same trick with Leibniz’ rule can be applied to the second term of (137), which will lead to the terms that are full derivatives and the following contribution:

$$\begin{aligned} \sum _{p = 0}^{N_d}\sum _{k=p+1}^{N_d}\sum _{i = 1}^{k-1}\frac{(-1)^{k-p}}{k+1}\left[ K_{(k)a}{}^{\alpha _{k}\rho \alpha _1..\alpha _{k-1}}\right] ^{\alpha _{k}\alpha _i}\partial _{\alpha _1..\alpha _{k}}\xi ^{a}. \end{aligned}$$
(138)

Note that the minimal number of derivatives in \(\partial _{\alpha _1..\alpha _k}\xi ^a\) is greater or equal than 2. It becomes obvious then that this expression is zero if one takes into account antisymmetrizer and the symmetry of \(\partial _{\alpha _1..\alpha _{k}}\xi ^{a}\). Thus, the formula (137) can be written as follows:

$$\begin{aligned}&-J^{\prime\rho } = \sum _{p = 1}^{N_d}\sum _{k = 1}^p\sum _{i= k}^p\frac{(-1)^{p-i}}{p+1}\partial _{\alpha _i}\left( \partial _{\alpha _{i+1}..\alpha _p}\left[ K_{(p)a}{}^{\rho \alpha _1..\alpha _p}\right] ^{\rho \alpha _p}\partial _{\alpha _1..\alpha _{i-1}}\xi ^{a}\right) \nonumber \\&-\sum _{p = 0}^{N_d}\sum _{k=p+1}^{N_d}\sum _{i = 1}^{k-1}\sum _{s = p+1}^k\frac{(-1)^{k+s}}{k+1}\partial _{\alpha _s}\left( \partial _{\alpha _{s+1}..\alpha _k}\left[ K_{(k)a}{}^{\alpha _{k}\rho \alpha _1..\alpha _{k-1}}\right] ^{\alpha _{k}\alpha _i}\partial _{\alpha _1..\alpha _{s-1}}\xi ^{a}\right) . \end{aligned}$$
(139)

As terms in the first and the second sequences of sums do not depend on k and p respectively, one can change summation order to calculate sums over these indices. This can be easily done for the first sequence of sums by using the following relation:

$$\begin{aligned} \sum _{k = 1}^p\sum _{i = k}^p = \sum _{i = 1}^p\sum _{k = 1}^i \end{aligned}$$
(140)

For the second term in (139) one should set the upper bound of sum over p to \(N_d-1\) (because the sum over k will give zero for \(p = N_d\)) and use (133), then perform index shift \(p\rightarrow p+1\) and use (140). The result will be the following:

$$\begin{aligned} -J^{\prime\rho } =&\sum _{p = 1}^{N_d}\sum _{k= 1}^p\frac{k(-1)^{p-k}}{p+1}\partial _{\alpha _k}\left( \partial _{\alpha _{k+1}..\alpha _p}\left[ K_{(p)a}{}^{\rho \alpha _1..\alpha _p}\right] ^{\rho \alpha _p}\partial _{\alpha _1..\alpha _{k-1}}\xi ^{a}\right) \nonumber \\&-\sum _{k=1}^{N_d}\sum _{i = 1}^{k-1}\sum _{s = 1}^k\frac{s(-1)^{k-s}}{k+1}\partial _{\alpha _{s}}\left( \partial _{\alpha _{s+1}..\alpha _k}\left[ K_{(k)a}{}^{\alpha _{k}\rho \alpha _1..\alpha _{k-1}}\right] ^{\alpha _{k}\alpha _i}\partial _{\alpha _1..\alpha _{s-1}}\xi ^{a}\right) . \end{aligned}$$
(141)

One can now put the derviatives \(\partial _{\alpha _k}\) and \(\partial _{\alpha _s}\) in the first and the second terms respectively out of the sums by renaming these indices in each term of the sums to \(\beta\). As it was for (130), one should be careful when doing this because the indices \(\alpha _k\) and \(\alpha _s\) can be encountered as the indices of the antisymmetrizer. The final answer is given by the formula:

$$\begin{aligned} -J^{\prime\rho } =&\partial _{\beta }\Bigg [\sum _{p = 2}^{N_d}\sum _{k= 1}^{p-1}\frac{k(-1)^{p-k}}{p+1}\partial _{\alpha _k..\alpha _{p-1}}\left( \left[ K_{(p)a}{}^{\rho \beta \alpha _1..\alpha _{p-1}}\right] ^{\rho \alpha _{p-1}}+\left[ K_{(p)a}{}^{\beta \rho \alpha _1..\alpha _{p-1}}\right] ^{\beta \alpha _{p-1}}\right) \nonumber \\&\times \partial _{\alpha _1..\alpha _{k-1}}\xi ^{a}+\sum _{p = 1}^{N_d}\frac{p}{p+1}\left[ K_{(p)a}{}^{\rho \beta \alpha _1..\alpha _{p-1}}\right] ^{\rho \beta }\partial _{\alpha _1..\alpha _{p-1}}\xi ^{a}\nonumber \\&-\sum _{p=3}^{N_d}\sum _{i = 1}^{p-2}\sum _{s = 1}^{p-1}\frac{s(-1)^{p-s}}{p+1}\partial _{\alpha _{s}..\alpha _{p-1}}\left[ K_{(p)a}{}^{\alpha _{p-1}\rho \beta \alpha _1..\alpha _{p-2}}\right] ^{\alpha _{p-1}\alpha _i}\partial _{\alpha _1..\alpha _{s-1}}\xi ^{a}\nonumber \\&-\sum _{p=2}^{N_d}\frac{p(p-1)}{p+1}\left[ K_{(p)a}{}^{\beta \rho \alpha _1..\alpha _{p-1}}\right] ^{\beta \alpha _{p-1}}\partial _{\alpha _1..\alpha _{p-1}}\xi ^{a}\Bigg ]. \end{aligned}$$
(142)

One can easily compare this result with (32) and (33) to ensure that they coincide.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilin, R.V. Noether currents in theories with higher derivatives and theories with differential field transformation in action (DFTA). Eur. Phys. J. Plus 137, 1144 (2022). https://doi.org/10.1140/epjp/s13360-022-03348-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03348-5

Navigation