Skip to main content
Log in

Shadow of a charged rotating black hole in f(R) gravity

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

A charged rotating black hole in f(R) gravity is characterized by mass, M, spin, a, electric charge, Q, and \(R_{0}\) which is proportional to cosmological constant. We analyze the image of the black hole shadow in four types (1) at \(r\rightarrow \infty \), (2) at \(r\rightarrow r_{O}\) in vacuum, (3) at \(r\rightarrow \infty \) and (4) at \(r\rightarrow r_{O}\) for an observer at the presence of plasma. Moreover, we investigate the effect of spin, charge, and modification of gravity on the shape of the shadow. In addition, we use two observable parameters, the radius \(R_{s}\) and the distortion parameter \(\delta _{s}\), characterizing the apparent shape. We show that the shadow becomes smaller with increasing electric charge for all cases. Also, by increasing the rotation parameters, the circular symmetry of the black hole’s shadow image will change. Furthermore, in the presence of plasma, the plasma parameter also affects the size of the shadow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

No data associated in the manuscript.

References

  1. T.D. Abbott et al., LIGO scientific and virgo collaborations. Phys. Rev. X 6, 041014 (2016)

    Google Scholar 

  2. B.P. Abbott et al., LIGO scientific and virgo collaborations. Phys. Rev. Lett. 116, 061102 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  3. Event Horizon Telescope. Collaboration et al., Astrophys. J. 875, L1 (2019)

    Article  ADS  Google Scholar 

  4. Event Horizon Telescope. Collaboration et al., Astrophys. J. 875, L2 (2019)

    Article  ADS  Google Scholar 

  5. Event Horizon Telescope. Collaboration et al., Astrophys. J. 875, L3 (2019)

    Article  ADS  Google Scholar 

  6. Event Horizon Telescope. Collaboration et al., Astrophys. J. 875, L4 (2019)

    Article  ADS  Google Scholar 

  7. Event Horizon Telescope. Collaboration et al., Astrophys. J. 875, L5 (2019)

    Article  ADS  Google Scholar 

  8. Event Horizon Telescope. Collaboration et al., Astrophys. J. 875, L6 (2019)

    Article  ADS  Google Scholar 

  9. S.S. Doeleman et al., Science 338, 355 (2012)

    Article  ADS  Google Scholar 

  10. K. Akiyama et al., Astrophys. J. 807, 150 (2015)

    Article  ADS  Google Scholar 

  11. M. Wang, S. Chen, J. Wang, and J. Jing, arXiv:1904.12423 [gr-qc]

  12. P.V. Cunha, C.A.R. Herdeiro, B. Kleihaus, J. Kunz, E. Radu, Phys. Lett. B 768, 373 (2017)

    Article  ADS  Google Scholar 

  13. M. Wang, S. Chen, J. Jing, J. Cosmol. Astropart. Phys. 10, 051 (2017)

    Article  ADS  Google Scholar 

  14. Z. Younsi, A. Zhidenko, L. Rezzolla, R. Konoplya, Y. Mizuno, Phys. Rev. D 94, 084025 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  15. M. Amir, B.P. Singh, S.G. Ghosh, Eur. Phys. J. C 78, 399 (2018)

    Article  ADS  Google Scholar 

  16. S.W. Wei, Y.X. Liu, J. Cosmol. Astropart. Phys. 2013, 063 (2013)

    Article  Google Scholar 

  17. J. M. Bardeen, Gordon and Breach. in Black Holes (Les Astres Occlus), C. DeWitt and B. S. DeWitt (eds.). p 215 ,New York (1973)

  18. A. de Vries Class. Quant. Grav. 17, 123 (2000)

  19. A. Abdujabbarov, F. Atamurotov, Y. Kucukakca, B. Ahmedov, U. Camci, Astrophys. Space Sci. 344, 429 (2013)

    Article  ADS  Google Scholar 

  20. A.A. Abdujabbarov, L. Rezzolla, B.J. Ahmedov, Mon. Not. Roy. Astron. Soc. 454, 2423 (2015)

    Article  ADS  Google Scholar 

  21. A. Ovgun, I. Sakalli, J. Saavedra, J. Cosmol. Astropart. Phys. 10, 041 (2018)

    Article  ADS  Google Scholar 

  22. S. Haroon, M. Jamil, K. Jusufi, K. Lin, R.B. Mann, Phys. Rev. D 99, 044015 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  23. Z. Stuchlik, D. Charbulak, J. Schee, Eur. Phys. J. C 78, 180 (2018)

    Article  ADS  Google Scholar 

  24. J.W. Mofft, Eur. Phys. J. C 75, 175 (2015)

    Article  ADS  Google Scholar 

  25. H.M. Wang, Y.M. Xu, S.W. Wei, J. Cosmol. Astropart. Phys. 2019, 046 (2019)

    Article  Google Scholar 

  26. Z. Li, C. Bambi, JCAP 1401, 041 (2014)

    Article  ADS  Google Scholar 

  27. A. Abdujabbarov, M. Amir, B. Ahmedov, S.G. Ghosh, Phys. Rev. D 93, 104004 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  28. A. Yumoto, D. Nitta, T. Chiba, N. Sugiyama, Phys. Rev. D 86, 103001 (2012)

    Article  ADS  Google Scholar 

  29. L. Amarilla, E.F. Eiroa, G. Giribet, Phys. Rev. D 81, 124045 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  30. L. Amarilla, E.F. Eiroa, Phys. Rev. D 85, 064019 (2012)

    Article  ADS  Google Scholar 

  31. P.V.P. Cunha, C.A.R. Herdeiro, E. Radu, H.F. Runarsson, Phys. Rev. Lett. 115(21), 211102 (2015)

    Article  ADS  Google Scholar 

  32. F.H. Vincent, E. Gourgoulhon, C. Herdeiro, E. Radu, Phys. Rev. D 94(8), 084045 (2016)

    Article  ADS  Google Scholar 

  33. S. Dastan, R. Saffari and S. Soroushfar, arXiv:1610.09477 [gr-qc]

  34. M. Sharif, S. Iftikhar, Eur. Phys. J. C 76, 630 (2016)

    Article  ADS  Google Scholar 

  35. C. Bambi, N. Yoshida, Class. Quant. Grav. 27, 205006 (2010)

    Article  ADS  Google Scholar 

  36. K. Jusufi, M. Jamil, P. Salucci, T. Zhu, and S. Haroon, arXiv:1905.11803 [physics.gen-ph]

  37. X. Hou, Z. Xu, M. Zhou, J. Wang, J. Cosmol. Astropart. Phys. 2018, 015 (2018)

    Article  Google Scholar 

  38. R. A. Konoplya, arXiv: 1905.00064 [gr-qc]

  39. S. Haroon, K. Jusufi and M. Jamil, arXiv:1904.00711 [gr-qc]

  40. C. Bambi, K. Freese, S. Vagnozzi and L. Visinelli, arXiv:1904.12983 [gr-qc]

  41. S. Vagnozzi and L. Visinelli, arXiv:1905.12421 [gr-qc]

  42. R. Shaikh, P. Kocherlakota, R. Narayan, P.S. Joshi, Mon. Not. Roy. Astron. Soc. 482, 52 (2019)

    Article  ADS  Google Scholar 

  43. C. Bambi, K. Freese, Phys. Rev. D 79, 043002 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  44. S.W. Wei, Y.X. Liu, R.B. Mann, Phys. Rev. D 99, 041303 (2019)

    Article  ADS  Google Scholar 

  45. S. W. Wei, Y. C. Zou, Y. X. Liu, and R. B. Mann, arXiv:1904.07710 [gr-qc]

  46. T. Zhu, Q. Wu, M. Jamil, K. Jusufi, arXiv:1906.05673

  47. K. Jusufi, M. Jamil, P. Salucci, T. Zhu, S. Haroon, arXiv:1905.11803

  48. P. Brax, C. van de Bruck, Class. Quant. Grav. 20, R201 (2003)

    Article  Google Scholar 

  49. D. Lovelock, J. Math. Phys. 12, 498 (1971)

    Article  ADS  Google Scholar 

  50. C. Brans, R.H. Dicke, Phys. Rev. 124, 925 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  51. Y. Fujii, K. Maeda, The scalar-tensor theory of gravitation (Cambridge University Press, Cambridge, 2003)

    Book  MATH  Google Scholar 

  52. S. Soroushfar, R. Saffari, J. Kunz, C. Lämmerzahl, Phys. Rev. D 92(4), 044010 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  53. S. Soroushfar, R. Saffari, N. Kamvar, Eur. Phys. J. C 76(9), 476 (2016)

    Article  ADS  Google Scholar 

  54. A.G. Riess et al., Supernova search team collaboration. Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  55. S. Perlmutter et al., Supernova Cosmology Project Collaboration. Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  56. J.L. Tonry et al., Supernova search team collaboration. Astrophys. J. 594, 1 (2003)

    Article  ADS  Google Scholar 

  57. C.L. Bennett et al., WMAP collaboration. Astrophys. J. Suppl. 148, 1 (2003)

    Article  ADS  Google Scholar 

  58. G. Hinshaw et al., WMAP collaboration. Astrophys. J. Suppl. 170, 288 (2007)

    Article  ADS  Google Scholar 

  59. H.A. Buchdahl, Mon. Not. Roy. Astron. Soc. 150, 1 (1970)

    Article  ADS  Google Scholar 

  60. A.A. Starobinsky, Phys. Lett. B 91, 99 (1980)

    Article  ADS  Google Scholar 

  61. K. Bamba, S.D. Odintsov, JCAP 0804, 024 (2008)

    Article  ADS  Google Scholar 

  62. M. Akbar, R.G. Cai, Phys. Lett. B 648, 243 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  63. G. Cognola, E. Elizalde, S. Nojiri, S.D. Odintsov, L. Sebastiani, S. Zerbini, Phys. Rev. D 77, 046009 (2008)

    Article  ADS  Google Scholar 

  64. C. Corda, Int. J. Mod. Phys. D 18, 2275 (2009)

    Article  ADS  Google Scholar 

  65. S. Capozziello, F. Darabi, D. Vernieri, Mod. Phys. Lett. A 25, 3279 (2010)

    Article  ADS  Google Scholar 

  66. S.H. Hendi, D. Momeni, Eur. Phys. J. C 71, 1823 (2011)

    Article  ADS  Google Scholar 

  67. S. Asgari, R. Saffari, Gen. Rel. Grav. 44, 737 (2012)

    Article  ADS  Google Scholar 

  68. S.H. Mazharimousavi, M. Halilsoy, T. Tahamtan, Eur. Phys. J. C 72, 1958 (2012)

    Article  ADS  Google Scholar 

  69. S.G. Ghosh, S.D. Maharaj, U. Papnoi, Eur. Phys. J. C 73, 2473 (2013)

    Article  ADS  Google Scholar 

  70. S. H. Hendi, B. Eslam Panah and R. Saffari, Int. J. Mod. Phys. D 23, 1450088 (2014)

  71. R. Saffari, S. Rahvar, Phys. Rev. D 77, 104028 (2008)

    Article  ADS  Google Scholar 

  72. S. Chakraborty, S. SenGupta, Eur. Phys. J. C 75, 11 (2015)

    Article  ADS  Google Scholar 

  73. S. Chakraborty, S. SenGupta, Eur. Phys. J. C 75, 538 (2015)

    Article  ADS  Google Scholar 

  74. V. Faraoni and T. P. Sotiriou, arXiv:1303.0746 [gr-qc]

  75. J.L. Synge, Mon. Not. Roy. Astron. Soc. 131, 463 (1966)

    Article  ADS  Google Scholar 

  76. S. Chandrasekhar, The mathematical theory of black holes (CLARENDON, OXFORD, UK, 1985)

    Book  MATH  Google Scholar 

  77. K. Hioki and K. i. Maeda, Phys. Rev. D 80, 024042 (2009)

  78. A. Grenzebach, V. Perlick, C. Lämmerzahl, Phys. Rev. D 89(12), 124004 (2014)

    Article  ADS  Google Scholar 

  79. A. Larranaga, J. Phys. 78, 697 (2012)

    Google Scholar 

  80. B. Carter, Phys. Rev. 174, 5 (1968)

  81. S.W. Wei, Y.X. Liu, JCAP 1311, 063 (2013)

    Article  ADS  Google Scholar 

  82. J.M. Bardeen, W.H. Press, S.A. Teukolsky, Astrophys. J. 178, 347 (1972)

    Article  ADS  Google Scholar 

  83. S.E. Vazquez, E.P. Esteban, Nuovo Cim. B 119, 489 (2004)

    ADS  Google Scholar 

  84. R. Takahashi, Publ. Astron. Soc. Jap. 57, 273 (2005)

    Article  ADS  Google Scholar 

  85. A.A. Abdujabbarov, L. Rezzolla, B.J. Ahmedov, Mon. Not. Roy. Astron. Soc. 454, 2423 (2015)

    Article  ADS  Google Scholar 

  86. J.B. Griffiths, J. Podolski, Exact space-times in Einstein’s general relativity (Cambridge University Press, Cambridge, 2009)

    Book  Google Scholar 

  87. J. Bicak, P. Hadrava, Res. Astron. Astrophys. 44, 389 (1975)

    ADS  Google Scholar 

  88. O.Y. Tsupko, G.S. Bisnovatyi-Kogan, Grav. Cosmol. 18, 117 (2012)

    Article  ADS  Google Scholar 

  89. V.S. Morozova, B.J. Ahmedov, A.A. Tursunov, Astrophys. Space Sci. 346, 513 (2013)

    Article  ADS  Google Scholar 

  90. X. Er, S. Mao, Mon. Not. Roy. Astron. Soc. 437, 2180 (2014)

    Article  ADS  Google Scholar 

  91. J.L. Synge, Relativity: the general theory (Interscience Publishers, New York, 1960)

    MATH  Google Scholar 

  92. F. Atamurotov, B. Ahmedov and A. Abdujabbarov Phys. Rev. D 92, 084005 (2015)

  93. G.S. Bisnovatyi-Kogan, O.Y. Tsupko, Mon. Not. Roy. Astron. Soc. 404, 1790 (2010)

    ADS  Google Scholar 

  94. A. Abdujabbarov, B. Toshmatov, Z. Stuchlík, B. Ahmedov, Int. J. Mod. Phys. D 26, 1750051 (2016)

    Article  ADS  Google Scholar 

  95. A. Rogers, Mon. Not. Roy. Astron. Soc. 451, 17 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Saffari.

Appendix

Appendix

Table 1 The details of parameter in Fig. 1, for an observer at infinity, the Q and a parameter were investigated in this figure in vacuum
Table 2 The details of parameter in Figs. 4, 5, and 6, for an observer at limited distance, effect of spin parameter, a were investigated in this figure in vacuum
Table 3 The details of parameter in Fig. 8, for an observer at limited distance
Table 4 The details of parameter in Fig. 9 for an observer at \(\infty \), the effect of a and Q, were investigated in this figure in the presence of plasma
Table 5 The details of parameter in Fig. 11, the effect of spin parameter, a for an observer at limited distance in the presence of plasma
Table 6 The details of parameter in Fig. 12, the effect of electric charge parameter, Q for an observer at limited distance in the presence of plasma

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dastan, S., Saffari, R. & Soroushfar, S. Shadow of a charged rotating black hole in f(R) gravity. Eur. Phys. J. Plus 137, 1002 (2022). https://doi.org/10.1140/epjp/s13360-022-03218-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03218-0

Navigation