Skip to main content
Log in

Special functions for heat kernel expansion

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

In this paper, we study an asymptotic expansion of the heat kernel for a Laplace operator on a smooth Riemannian manifold without a boundary at enough small values of the proper time. The Seeley–DeWitt coefficients of this decomposition satisfy a set of recurrence relations, which we use to construct two function families of a special kind. Using these functions, we study the expansion of a local heat kernel for the inverse Laplace operator. We show that the new functions have some important properties. For example, we can consider the Laplace operator on the function set as a shift one. Also, we describe various applications useful in theoretical physics and, in particular, we find a decomposition of local Green’s functions near the diagonal in terms of new functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availibility Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. V.A. Fock, Die Eigenzeit in der Klassischen- und in der Quanten- mechanik. Sow. Phys. 12, 404–425 (1937)

    MATH  Google Scholar 

  2. J. Schwinger, On gauge invariance and vacuum polarization. Phys. Rev. 82, 664–679 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  3. R. T. Seeley, Complex powers of an elliptic operator, Singular Integrals, Proc. Sympos. Pure Math. Amer. Math. Soc., 10, 288–307 (1967)

  4. A.O. Barvinsky, G.A. Vilkovisky, The generalized Schwinger-DeWitt technique in gauge theories and quantum gravity. Phys. Rept. 119(1), 1–74 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  5. I.G. Avramidi, Heat Kernel and Quantum Gravity, Lecture Notes in Physics Monographs, vol. 64. (SpringerVerlag, Berlin, Heidelberg, 2000)

  6. D.V. Vassilevich, Heat kernel expansion: user’s manual. Phys. Rep. 388, 279–360 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  7. A.V. Ivanov, N.V. Kharuk, Heat kernel: proper-time method, Fock–Schwinger gauge, path integral, and Wilson line. TMF 205(2), 242–261 (2020); Theoret. and Math. Phys., 205(2), 1456–1472 (2020)

  8. B.S. DeWitt, Dynamical Theory of Groups and Fields (Gordon and Breach, New York, 1965), pp.1–248

    MATH  Google Scholar 

  9. P.B. Gilkey, The spectral geometry of a Riemannian manifold. J. Differ. Geom. 10, 601–618 (1975)

    Article  MathSciNet  Google Scholar 

  10. P.B. Gilkey, Invariance Theory, the Heat Equation, and the Atiyah-Singer Index Theorem (CRC Press, Boca Raton, 1994), pp.1–536

    Google Scholar 

  11. P.B. Gilkey, Asymptotic Formulae in Spectral Geometry (CRC Press, Boca Raton, 2004), pp.1–312

    MATH  Google Scholar 

  12. A.O. Barvinsky, Y.V. Gusev, G.A. Vilkovisky, V.V. Zhytnikov, Asymptotic behaviors of the heat kernel in covariant perturbation theory. J. Math. Phys. 35(7), 3543–3559 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  13. A.O. Barvinsky, V.F. Mukhanov, New nonlocal effective action. Phys. Rev. D 66(6), 065007 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  14. A.O. Barvinsky, Y.V. Gusev, V.F. Mukhanov, D.V. Nesterov, Nonperturbative late time asymptotics for the heat kernel in gravity theory. Phys. Rev. D 68(10), 105003 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  15. G. W. Gibbons, Quantum field theory in curved spacetime, General Relativity, An Einstein Centenary Survey, 639–679 (1979)

  16. A.V. Ivanov, Diagram technique for the heat kernel of the covariant Laplace operator. TMF 198(1), 113–132 (2019); Theoret. and Math. Phys., 198(1), 100–117 (2019)

  17. A.V. Ivanov, D.V. Vassilevich, Atiyah-Patodi-Singer index theorem for domain walls. J. Phys. A: Math. Theor. 53, 305201 (2020)

    Article  MathSciNet  Google Scholar 

  18. A.V. Ivanov, N.V. Kharuk, Two-loop cutoff renormalization of 4-D Yang-Mills effective action. J. Phys. G: Nucl. Part. Phys. 48, 015002 (2020)

    Article  ADS  Google Scholar 

  19. A. V. Ivanov, N. V. Kharuk, Formula for two-loop divergent part of 4-D Yang-Mills effective action, arXiv:2203.07131 (2022)

  20. M. Asorey, F. Falceto, Geometric regularization of gauge theories. Nucl. Phys. B 327, 427–460 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  21. T. Bakeyev, A. Slavnov, Higher covariant derivative regularization revisited. Mod. Phys. Lett. A 11(19), 1539–1554 (1996)

    Article  ADS  Google Scholar 

  22. K.V. Stepanyantz, Higher covariant derivative regularization for calculations in supersymmetric theories. Proc. Steklov Inst. Math. 272, 256 (2011)

    Article  MathSciNet  Google Scholar 

  23. A. Alonso-Izquierdo, R. Fresneda, J.M. Guilarte, D. Vassilevich, Soliton fermionic number from the heat kernel expansion. Eur. Phys. J. C 79, 525 (2019)

    Article  Google Scholar 

  24. C. Almeida, A. Alonso-Izquierdo, R. Fresneda, J.M. Guilarte, D. Vassilevich, Non-topological fractional fermion number in the Jackiw-Rossi model. Phys. Rev. D 103, 125015 (2021)

    Article  ADS  Google Scholar 

  25. A.O. Barvinsky, W. Wachowski, The heat kernel expansion for higher order minimal and non-minimal operators. Phys. Rev. D 105, 065013 (2022)

    Article  ADS  Google Scholar 

  26. N. Berline, E. Getzler, M. Vergne, Heat Kernels and Dirac Operators, Berlin, Springer, 1–363 (2004)

  27. E. Combet, Paramétrix et invariants sur les variétés compactes. Annales scientifiques de l’École Normale Supérieure 3, 247–271 (1970)

    Article  MathSciNet  Google Scholar 

  28. D. Fursaev, D. Vassilevich, Operators, Geometry and Quanta: Methods of Spectral Geometry in Quantum Field Theory (Springer, Dordrecht, 2011), pp.1–330

    Book  Google Scholar 

  29. J.L. Synge, A characteristic function in riemannian space and its application to the solution of Geodesic Triangles. London Math. Soc. 32, 241–258 (1931)

    Article  MathSciNet  Google Scholar 

  30. J.H. van Vleck, The correspondence principle in the statistical interpretation of quantum mechanics. Proc. Nat. Acad. Sci. 14, 178–188 (1928)

    Article  ADS  Google Scholar 

  31. H. Bateman, A. Erdelyi, Tables of Integral Transforms, vol. II (McGraw-Hill Book Company, New York, 1954), pp.1–467

    Google Scholar 

  32. A.D. Poularikas, The Transforms and Applications Handbook (CRC Press, Boca Raton, 2018), pp.1–911

    Google Scholar 

  33. M.S. Birman, M.Z. Solomjak, Spectral Theory of Self-Adjoint Operators in Hilbert Space (Springer, Dordrecht, 1987), pp.1–302

    Book  Google Scholar 

  34. M. Lüscher, Dimensional regularisation in the presence of large background fields. Ann. Phys. 142, 359–392 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  35. E.S. Fradkin, A.A. Tseytlin, Renormalizable asymptotically free quantum theory of gravity. Nuclear Phys. B 201, 469–491 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  36. A.V. Ivanov, N.V. Kharuk, Quantum Equation of Motion and Two-Loop Cutoff Renormalization for \(\phi ^3\) Model, Questions of quantum field theory and statistical physics. Part 26. Zap. Nauchn. Sem. POMI 487, POMI, St. Petersburg, 151–166 (2019); J Math Sci 257, 526–536 (2021) arXiv:2203.04562v1

Download references

Acknowledgements

This research is supported by the Ministry of Science and Higher Education of the Russian Federation, agreement 075-15-2022-289. Authors express gratitude to D.V. Vassilevich for reading of the manuscript and suggestion of amendments. Also, A.V. Ivanov is a winner of the Young Russian Mathematician award and would like to thank its sponsors and jury.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ivanov.

Appendix A

Appendix A

Lemma 11

The integral (85) from Theorem 2 has the following series expansion near zero for \(m=0\)

$$\begin{aligned} T(\omega ,s)&= 2\int _{{\mathbb {R}}_+} d\rho \,\rho J_0(\rho \sqrt{2\omega })\left( e^{-s/\rho ^2}-1\right) \nonumber \\&=\sum _{k=1}^{+\infty } \frac{s^k[\ln (s\omega /2) -2H_{k-1}-H_{k} +3\gamma ]}{(k-1)!(k-1)!k!}(\omega /2)^{k-1}. \end{aligned}$$
(117)

Proof

First of all we show that the integral satisfies the following differential equation \(2\partial _\omega ^{} s\partial _s^2T(\omega ,s)=T(\omega ,s)\). This can be achieved by explicit differentiation, integration by parts, and using the properties of the Bessel functions

$$\begin{aligned} \frac{d}{dx}J_0(x)=-J_1(x),\,\,\,\,\,\,\frac{1}{x}J_1(x)+\frac{d}{dx}J_1(x)=J_0(x). \end{aligned}$$
(118)

According to the above mentioned, let us take an ansatz for (117) in the form

$$\begin{aligned} T(\omega ,s)= g_0(\omega )+\sum _{k=1}^\infty \left( s^k\ln (s)f_k(\omega )+s^k g_k(\omega )\right) , \end{aligned}$$
(119)

where the coefficients \(f_k(\omega )\) and \(g_k(\omega )\) should be found. Let us apply the operator \(2\partial _\omega ^{} s\partial _s^2\) to (119). Then we get the recurrent relations

$$\begin{aligned} {\left\{ \begin{array}{ll} 2\partial _\omega f_1(\omega )=g_0(\omega ); \\ 2k(k+1)\partial _\omega f_{k+1}(\omega )=f_k(\omega ); \\ 2(2k+1)\partial _\omega f_{k+1}(\omega )-2k(k+1)\partial _\omega g_{k+1}(\omega )=g_k(\omega ). \end{array}\right. } \end{aligned}$$
(120)

where \(k\geqslant 1\).

To solve them, we have to find the initial conditions, using the integral representation (117). One can note that \(T(\omega ,0)=0\), so \(g_0(\omega )=0\). It is evident, that we can explicitly integrate the equations from (120). However, we have such arbitrariness as integration constants \(\{f_k(0)\}_{k\geqslant 1}\) and \(\{g_k(0)\}_{k\geqslant 2}\). Let us find them, using the asymptotic behavior of the construction (85) for quite small values of \(\omega\). For those purposes we cut \({\mathbb {R}}_+\) in two intervals [0; 1] and \([1;+\infty )\). So we get

$$\begin{aligned} 2\int _0^1d\rho \, \rho J_0(\rho \sqrt{2\omega })\left( e^{-s/\rho ^2}-1\right)&= \int _0^1 d\rho \, \left( e^{-s/\rho }-1\right) +o(1)\\\nonumber &=s\ln (s)+s\omega -s-\sum _{k=2}^{+\infty } \frac{(-s)^k}{k!(k-1)}+o(1),\end{aligned}$$
(121)

and

$$\begin{aligned} 2\int _1^{+\infty } d\rho \,\rho J_0(\rho \sqrt{2\omega })\left( e^{-s/\rho ^2}-1\pm \frac{s}{\rho ^2}\right) =\sum _{k=2}^{+\infty } \frac{(-s)^k}{k!(k-1)}+s\ln (\omega )+s\left( 2\gamma -\ln (2)\right) +o(1). \end{aligned}$$
(122)

Using the last calculations and the form of ansatz (119), we get

$$\begin{aligned} \sum _{k=1}^{+\infty } s^k\ln (s) f_k(0)+\sum _{k=2}^{+\infty }s^kg_k(0)=s \ln (s). \end{aligned}$$
(123)

Therefore, \(f_1(0)=1\) and \(f_k(0)=g_k(0)=0\) for \(k\geqslant 2\). Finally, we need to find the coefficient \(g_1(\omega )\), that corresponds to s. This can be achieved by subtracting the logarithmic part \(s\ln s\) and differentiating by the parameter s with a further transition \(s\rightarrow 0\). So we get

$$\begin{aligned} \partial _s\big |_{s=0}\bigg [2\int _{{\mathbb {R}}_+} d\rho \, \rho J_0(\rho \sqrt{2\omega })\left( e^{-s/\rho ^2}-1\right) -s\ln (s)\bigg ]=&-2\int _1^{+\infty } \frac{d\rho }{\rho }J_0(\rho \sqrt{2\omega })\nonumber \\&-2\int _0^1\frac{d\rho }{\rho }\left( J_0(\rho \sqrt{2\omega })-1\right) +\gamma -1\\ \nonumber =&\ln (\omega )+3\gamma -\ln 2-1, \end{aligned}$$
(124)

where in the second equality we have used the change of variable \(\rho \rightarrow \rho /\sqrt{2\omega }\). This means that \(g_1(\omega )=\ln (\omega )+3\gamma -\ln (2)-1\). Solving the recurrent relations, we find

$$\begin{aligned} f_k(\omega )=\frac{(\omega /2)^{k-1}}{k!(k-1)!(k-1)!},\,\,\, g_k(\omega )=\frac{\ln (\omega )-2H_{k-1}-H_k+3\gamma -\ln 2}{k!(k-1)!(k-1)!}(\omega /2)^{k-1}, \end{aligned}$$
(125)

which leads to the statement of the lemma. \(\hfill\square\)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, A.V., Kharuk, N.V. Special functions for heat kernel expansion. Eur. Phys. J. Plus 137, 1060 (2022). https://doi.org/10.1140/epjp/s13360-022-03176-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03176-7

Navigation