Skip to main content
Log in

All-optical input-agnostic polarization transformer via experimental Kraus-map control

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract

The polarization of light is utilized in many technologies throughout science and engineering. The ability to transform one state of polarization to another is a key enabling technology. Common polarization transformers are simple polarizers and polarization rotators. Simple polarizers change the intensity depending on the input state and can only output a fixed polarized state, while polarization rotators rotates the input Stokes vector in the 3D Stokes space. We experimentally demonstrate an all-optical input-agnostic polarization transformer (AI-APT), which transforms all input states of polarization to a particular state that can be polarized or partially polarized. The output state of polarization and intensity depends solely on setup parameters, and not on the input state, thereby the AI-APT functions differently from simple polarizers and polarization rotators. The AI-APT is completely passive, and thus can be used as a polarization controller or stabilizer for single photons and ultrafast pulses. To achieve this, we, for the first time, experimentally realize complete kinematic state controllability of an open single-qubit by Kraus maps put forth in Wu et al. (J Phys A 40:5681, 2007). The AI-APT may open a new frontier of partially polarized ultrafast optics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: There are no associated data available.]

References

  1. L.B. Wolff, Polarization-based material classification from specular reflection. IEEE Trans. Pattern Anal. Mach. Intell. 12(11), 1059–1071 (1990). https://doi.org/10.1109/34.61705

    Article  ADS  Google Scholar 

  2. K. Koshikawa, Y. Shirai, A model-based recognition of glossy objects using their polarimetrical properties. Adv. Robot. 2(2), 137–147 (1987). https://doi.org/10.1163/156855387X00129

    Article  Google Scholar 

  3. J.S. Tyo, D.L. Goldstein, D.B. Chenault, J.A. Shaw, Review of passive imaging polarimetry for remote sensing applications. Appl. Opt. 45(22), 5453–5469 (2006). https://doi.org/10.1364/AO.45.005453

    Article  ADS  Google Scholar 

  4. J.R. Schott, Fundamentals of Polarimetric Remote Sensing. SPIE, 1000 20th Street, Bellingham, WA 98227-0010 USA (2009). https://doi.org/10.1117/3.817304

  5. N. Ghosh, A.I. Vitkin, Tissue polarimetry: concepts, challenges, applications, and outlook. J. Biomed. Opt. 16(11), 110801 (2011). https://doi.org/10.1117/1.3652896

    Article  ADS  Google Scholar 

  6. W.H.T. Vlemmings, A review of maser polarization and magnetic fields. Proc. Int. Astron. Union 3(S242), 37–46 (2007). https://doi.org/10.1017/S1743921307012549

    Article  Google Scholar 

  7. E.L. Degl’innocenti, M. Landolfi (eds.), Polarization in Spectral Lines. Astrophysics and Space Science Library (Springer, Dordrecht, 2004). https://doi.org/10.1007/1-4020-2415-0_11

    Book  Google Scholar 

  8. J. Zhang, S. Ding, A. Dang, Polarization property changes of optical beam transmission in atmospheric turbulent channels. Appl. Opt. 56(18), 5145–5155 (2017). https://doi.org/10.1364/AO.56.005145

    Article  ADS  Google Scholar 

  9. J. Ma, J. Wu, L. Tan, S. Yu, Polarization properties of gaussian-schell model beams propagating in a space-to-ground optical communication downlink. Appl. Opt. 56(6), 1781–1787 (2017). https://doi.org/10.1364/AO.56.001781

    Article  ADS  Google Scholar 

  10. R. Yang, Y. Xue, Y. Li, L. Shi, Y. Zhu, Q. Zhu, Influence of atmospheric turbulence on the quantum polarization state. In Young Scientists Forum 2017, vol. 10710 (SPIE, 1000 20th Street, Bellingham, WA 98227-0010 USA, 2018). pp. 36–41. https://doi.org/10.1117/12.2312038

  11. S. Gasparoni, J.-W. Pan, P. Walther, T. Rudolph, A. Zeilinger, Realization of a photonic controlled-NOT gate sufficient for quantum computation. Phys. Rev. Lett. 93(2), 020504 (2004). https://doi.org/10.1103/PhysRevLett.93.020504

    Article  ADS  Google Scholar 

  12. P. Kok, W.J. Munro, K. Nemoto, T.C. Ralph, J.P. Dowling, G.J. Milburn, Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79(1), 135–174 (2007). https://doi.org/10.1103/RevModPhys.79.135

    Article  ADS  Google Scholar 

  13. J.L. O’Brien, A. Furusawa, J. Vučković, Photonic quantum technologies. Nat. Photonics 3(12), 687–695 (2009). https://doi.org/10.1038/nphoton.2009.229

    Article  ADS  Google Scholar 

  14. K.H. Kagalwala, G. Di Giuseppe, A.F. Abouraddy, B.E.A. Saleh, Single-photon three-qubit quantum logic using spatial light modulators. Nat. Commun. 8(1), 739 (2017). https://doi.org/10.1038/s41467-017-00580-x

    Article  ADS  Google Scholar 

  15. R.K. Saripalli, A. Ghosh, N. Apurv Chaitanya, G.K. Samanta, Frequency-conversion of vector vortex beams with space-variant polarization in single-pass geometry. Appl. Phys. Lett. 115(5), 051101 (2019). https://doi.org/10.1063/1.5111593

    Article  ADS  Google Scholar 

  16. K.M. Dorney, L. Rego, N.J. Brooks, J. San Román, C.-T. Liao, J.L. Ellis, D. Zusin, C. Gentry, Q.L. Nguyen, J.M. Shaw, A. Picón, L. Plaja, H.C. Kapteyn, M.M. Murnane, C. Hernández-García, Controlling the polarization and vortex charge of attosecond high-harmonic beams via simultaneous spin-orbit momentum conservation. Nat. Photonics 13(2), 123–130 (2019). https://doi.org/10.1038/s41566-018-0304-3

    Article  ADS  Google Scholar 

  17. B. Alonso, I. Lopez-Quintas, W. Holgado, R. Drevinskas, P.G. Kazansky, C. Hernández-García, Í.J. Sola, Complete spatiotemporal and polarization characterization of ultrafast vector beams. Commun. Phys. 3(1), 1–10 (2020). https://doi.org/10.1038/s42005-020-00419-w

    Article  Google Scholar 

  18. M. Banning, Practical methods of making and using multilayer filters. JOSA 37(10), 792–797 (1947). https://doi.org/10.1364/JOSA.37.000792

    Article  ADS  Google Scholar 

  19. F.J. Duarte, Tunable Laser Optics (CRC Press, Boca Raton, Florida, 2015)

    Book  Google Scholar 

  20. A.H. Dorrah, N.A. Rubin, A. Zaidi, M. Tamagnone, F. Capasso, Metasurface optics for on-demand polarization transformations along the optical path. Nat. Photonics (2021). https://doi.org/10.1038/s41566-020-00750-2

    Article  Google Scholar 

  21. S. Wang, Z.-L. Deng, Y. Wang, Q. Zhou, X. Wang, Y. Cao, B.-O. Guan, S. Xiao, X. Li, Arbitrary polarization conversion dichroism metasurfaces for all-in-one full Poincaré sphere polarizers. Light Sci. Appl. 10(1), 24 (2021). https://doi.org/10.1038/s41377-021-00468-y

    Article  ADS  Google Scholar 

  22. B. Koch, R. Noé, D. Sandel, V. Mirvoda, Versatile endless optical polarization controller/tracker/demultiplexer. Opt. Express 22(7), 8259 (2014). https://doi.org/10.1364/OE.22.008259

    Article  ADS  Google Scholar 

  23. T. Chiba, Y. Ohtera, S. Kawakami, Polarization stabilizer using liquid crystal rotatable waveplates. J. Light. Technol. 17(5), 885–890 (1999). https://doi.org/10.1109/50.762907

    Article  ADS  Google Scholar 

  24. M. Martinelli, P. Martelli, S.M. Pietralunga, Polarization stabilization in optical communications systems. J. Light. Technol. 24(11), 4172–4183 (2006). https://doi.org/10.1109/JLT.2006.884228

    Article  ADS  Google Scholar 

  25. G. Millot, S. Wabnitz, Nonlinear polarization effects in optical fibers: polarization attraction and modulation instability [Invited]. J. Opt. Soc. Am. B 31(11), 2754 (2014). https://doi.org/10.1364/JOSAB.31.002754

    Article  ADS  Google Scholar 

  26. J. Fatome, S. Pitois, P. Morin, E. Assémat, D. Sugny, A. Picozzi, H.R. Jauslin, G. Millot, V.V. Kozlov, S. Wabnitz, A universal optical all-fiber omnipolarizer. Sci. Rep. 2(1), 938 (2012). https://doi.org/10.1038/srep00938

    Article  ADS  Google Scholar 

  27. C. Bourassin-Bouchet, L. Barreau, V. Gruson, J.-F. Hergott, F. Quéré, P. Salières, T. Ruchon, Quantifying decoherence in attosecond metrology. Phys. Rev. X 10(3), 031048 (2020). https://doi.org/10.1103/PhysRevX.10.031048

    Article  Google Scholar 

  28. J.S. Eismann, L.H. Nicholls, D.J. Roth, M.A. Alonso, P. Banzer, F.J. Rodríguez-Fortuño, A.V. Zayats, F. Nori, K.Y. Bliokh, Transverse spinning of unpolarized light. Nat. Photonics 15(2), 156–161 (2021). https://doi.org/10.1038/s41566-020-00733-3

    Article  ADS  Google Scholar 

  29. K. Kraus, States, Effects, and Operations Fundamental Notions of Quantum Theory. Lecture Notes in Physics (Springer, Berlin, Heidelberg, 1983)

    Book  Google Scholar 

  30. R. Wu, A. Pechen, C. Brif, H. Rabitz, Controllability of open quantum systems with Kraus-map dynamics. J. Phys. A Math. Theor. 40(21), 5681–5693 (2007). https://doi.org/10.1088/1751-8113/40/21/015

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. M. Ziman, P. Štelmachovič, V. Bužek, M. Hillery, V. Scarani, N. Gisin, Diluting quantum information: an analysis of information transfer in system-reservoir interactions. Phys. Rev. A 65(4), 042105 (2002). https://doi.org/10.1103/PhysRevA.65.042105

    Article  ADS  Google Scholar 

  32. L. Roa, A. Delgado, M.L. Ladron de Guevara, A.B. Klimov, Measurement-driven quantum evolution. Phys. Rev. A 73(1), 012322 (2006). https://doi.org/10.1103/PhysRevA.73.012322

    Article  ADS  MathSciNet  Google Scholar 

  33. G.G. Stokes, On the composition and resolution of streams of polarized light from different sources. Cambridge library collection - mathematics, vol. 3 (Cambridge University Press, Cambridge, 2009), pp. 233–258. https://doi.org/10.1017/CBO9780511702266.010

    Book  Google Scholar 

  34. M. Born, E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation. Interference and Diffraction of Light (Cambridge University Press, Cambridge, 1999). https://doi.org/10.1017/CBO9781139644181

    Book  MATH  Google Scholar 

  35. J.W. Goodman, Statistical Optics (Wiley, New York, 2000)

    Google Scholar 

  36. R.C. Jones, A New calculus for the treatment of optical systemsI. Description and discussion of the calculus. JOSA 31(7), 488–493 (1941). https://doi.org/10.1364/JOSA.31.000488

    Article  ADS  MATH  Google Scholar 

  37. D.L. Falkoff, J.E. MacDonald, On the stokes parameters for polarized radiation*. J. Opt. Soc. Am. 41(11), 861 (1951). https://doi.org/10.1364/JOSA.41.000861

    Article  ADS  Google Scholar 

  38. U. Fano, A stokes-parameter technique for the treatment of polarization in quantum mechanics. Phys. Rev. 93(1), 121–123 (1954). https://doi.org/10.1103/PhysRev.93.121

    Article  ADS  MATH  Google Scholar 

  39. G.B. Parrent, P. Roman, On the matrix formulation of the theory of partial polarization in terms of observables. Il Nuovo Cimento (1955-1965) 15(3), 370 (2008). https://doi.org/10.1007/BF02902573

    Article  MathSciNet  MATH  Google Scholar 

  40. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary (Cambridge University Press, Cambridge, 2010). https://doi.org/10.1017/CBO9780511976667

    Book  MATH  Google Scholar 

  41. R. Simon, N. Mukunda, Universal SU(2) gadget for polarization optics. Phys. Lett. A 138(9), 474–480 (1989). https://doi.org/10.1016/0375-9601(89)90748-2

    Article  ADS  Google Scholar 

  42. R. Simon, N. Mukunda, Minimal three-component SU(2) gadget for polarization optics. Phys. Lett. A 143(4), 165–169 (1990). https://doi.org/10.1016/0375-9601(90)90732-4

    Article  ADS  Google Scholar 

  43. M.P. Almeida, F. de Melo, M. Hor-Meyll, A. Salles, S.P. Walborn, P.H.S. Ribeiro, L. Davidovich, Environment-induced sudden death of entanglement. Science 316(5824), 579–582 (2007). https://doi.org/10.1126/science.1139892

    Article  ADS  Google Scholar 

  44. Y. Yugra, C. Montenegro, F. De Zela, Constraints between concurrence and polarization for mixed states subjected to open system dynamics. Phys. Rev. A 105(6), 063710 (2022). https://doi.org/10.1103/PhysRevA.105.063710

    Article  ADS  MathSciNet  Google Scholar 

  45. S.P. Walborn, P.H. Souto Ribeiro, L. Davidovich, F. Mintert, A. Buchleitner, Experimental determination of entanglement with a single measurement. Nature 440(7087), 1022–1024 (2006). https://doi.org/10.1038/nature04627

    Article  ADS  Google Scholar 

  46. A. Aiello, G. Puentes, J.P. Woerdman, Linear optics and quantum maps. Phys. Rev. A 76(3), 032323 (2007). https://doi.org/10.1103/PhysRevA.76.032323

    Article  ADS  Google Scholar 

  47. D. Barberena, G. Gatti, F. De Zela, Experimental demonstration of a secondary source of partially polarized states. J. Opt. Soc. Am. A 32(4), 697 (2015). https://doi.org/10.1364/JOSAA.32.000697

    Article  ADS  Google Scholar 

  48. A. Lizana, I. Estévez, F.A. Torres-Ruiz, A. Peinado, C. Ramirez, J. Campos, Arbitrary state of polarization with customized degree of polarization generator. Opt. Lett. 40(16), 3790 (2015). https://doi.org/10.1364/OL.40.003790

    Article  ADS  Google Scholar 

  49. K.A. Kirkpatrick, The Schrödinger-HJW Theorem. Found. Phys. Lett. 19(1), 95–102 (2006). https://doi.org/10.1007/s10702-006-1852-1

    Article  MathSciNet  MATH  Google Scholar 

  50. N. Kikuchi, Analysis of signal degree of polarization degradation used as control signal for optical polarization mode dispersion compensation. J. Light. Technol. 19(4), 480 (2001)

    Article  ADS  Google Scholar 

  51. D.C. Louie, J. Phillips, L. Tchvialeva, S. Kalia, H. Lui, W. Wang, T.K. Lee, Degree of optical polarization as a tool for detecting melanoma: proof of principle. J. Biomed. Opt. 23(12), 1–7 (2018). https://doi.org/10.1117/1.JBO.23.12.125004

    Article  Google Scholar 

  52. E. Pisanty, G.J. Machado, V. Vicuña-Hernández, A. Picón, A. Celi, J.P. Torres, M. Lewenstein, Knotting fractional-order knots with the polarization state of light. Nat. Photonics 13(8), 569–574 (2019). https://doi.org/10.1038/s41566-019-0450-2

    Article  ADS  Google Scholar 

  53. L. Rego, K.M. Dorney, N.J. Brooks, Q.L. Nguyen, C.-T. Liao, J. San Román, D.E. Couch, A. Liu, E. Pisanty, M. Lewenstein, L. Plaja, H.C. Kapteyn, M.M. Murnane, C. Hernández-García, Generation of extreme-ultraviolet beams with time-varying orbital angular momentum. Science 364(6447), 9486 (2019). https://doi.org/10.1126/science.aaw9486

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Defense Advanced Research Projects Agency (DARPA) Grant Number D19AP00043 under mentorship of Dr. Joseph Altepeter. J.M.L. is supported by the Louisiana Board of Regents’ Graduate Fellowship Program. R.T.G. also acknowledges funding from the U.S. Office of Naval Research (ONR) under Grant N000141912374. D.I.B. is also supported by the U.S. Army Research Office (ARO) under Grant W911NF-19-1-0377. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of DARPA, ONR, ARO, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein. The authors thank a Quantum editor for valuable discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ryan Glasser or Denys Bondar.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Saripalli, R., Leamer, J. et al. All-optical input-agnostic polarization transformer via experimental Kraus-map control. Eur. Phys. J. Plus 137, 930 (2022). https://doi.org/10.1140/epjp/s13360-022-03104-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/s13360-022-03104-9

Navigation